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Professional activities (Dan Kim)

IEEE COMMUNICATIONS

SURVEYS & TUTORIALS

A PUBLICATION OF THE IEEE COMMUMICATIONS SOCIETY

IEEE
ComSoc

W Eomansniansar Sty

 Editorial Board Member

= Associate Editor, IEEE Communications Surveys and Tutorials
(impact factor: 25.25 (2021), #1 impact factor among all the

IEEE journals), 2021 - present. A %‘;ﬁﬂfﬁrys
. Ed|t0r|a| Boal‘d Member, ElseVier ComputeI’S and Securitv L T

(impact factor: 4.438), 2019 - present.

= Editorial Board Member, Elsevier Computer Networks
(impact factor: 4.474), April 2022 - present.

* General (co-)chair for conferences

= The 54" IEEE/IFIP Int. Conf. on Dependable Systems and
Networks (DSN 2024) to be held in Brisbane, Australia.

= The 24" Australasian Conf. on Information Security and Privacy
(ACISP 2019)

= The 22" |EEE Pacific Rim Int. Sym. on Dependable Computing
(PRDC 2017)
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My Research areas: Cyber G.A.M.E B b

raphical Security

Models (GSM): * Model-based Cyber Security Risk Analysis

Hje]a @ slsIc=lfIAE o Securing Al systems and Cybersecurity
Cyber Security for Al: using Al techniques

oving Target
Defence (MTD):

* Reslilient and Proactive Cyber Defence

E  Red team and Blue team Automation &
Evaluation
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My Research areas: Cyber G.A.M.E — PhD students oot

raphical Security » |0T: Kok Onn Chee (PhD students, UQ)
Models (GSl\/l);  Vehicle nets: Nhung Nguyen (PhD students, UQ)

. « AML for IoT: Ke He (PhD student, U Auckland)
| for Cybersecurity & « AML for Networks: Subrat Swain (PhD student, UQ/IITD)

Cyber Security for Al: - AML for vehicles: Isha Pali (PhD student, UQ/IITD)
 ML/DL for Distributed IDS: Ulysses Lam (PhD student, UQ)

oving Target  Against Al powered attacks: Tina Moghaddam (PhD
Defence (MTD): student, UQ)

E * Red team automation using DRL: William Li (PhD
student, UQ)

11
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Al for cyber security & cyber security for Al

* Q1: What/how can we use Al for Cybersecurity?

* Q2: How can we make Al secure/robust?

)



I\/Iy recent R&D project related to Al 0 S

Resilient Learning-based Defense in The USA RDECOM 420K USD 2020-
Adversarial Uncertain Environments International 2023
Technology Center -
Pacific (ITC-PAC) and
the US Army Research
Lab (ARL)

Cyber Defenses and Their Assessment for The USA RDECOM 420K USD 2023- Co-PI
Resilient Autonomous Systems International 2026
Technology Center -
(to be awarded) Pacific (ITC-PAC) and
the US Army Research
Lab (ARL)

 ML/DL based IDS for SDN/vehicle nets
« Continual learning
« Federated learning

 Intrusion response system (IRS) 13



My experience in Al (Machine/Deep learning)

« Worked on ML for cybersecurity since 2001

. g/loaosztger thesis (Machine Learning techniques for Network Intrusion Detection) in

= A part of PhD thesis - Privacy preserving data mining techniques for Sensor
Networks in 2008

» Published research papers in ML/DL for cybersecurity
* Host/Network Intrusion Detection
* DDoS attacks detection
= Spam (e-mail) detection
= Android malware detection
= Al for cyberattacks and defense automation

« Security for Al
= AML in images
= AML for IDS
* Privacy for ML/DL

14



My research on Al security & Security for Al (2001-present) B o aunamams

Web attack
detection with DDOS.
HMM detection
DDoS with GA Android ; i
[W2CIS04] detection based Malware RL using HE in
Host based IDS NIDS with with Traffic optimized detectionwith  C'oUd [IEEEA20]
with ML/Data Hybrid Feature ~ NIDS with Matrix and traffic ML & DL
mining approach Selection RF&MPM WMA matrix [ICSSA18][Trust DL for CAN
[WISC02/KISCO02] [CISCO5] [CISO07] [ISA09] [IMIS11] com19m] attacks
detection
[SPIE20]

2001-2002 2f03 2004 2f05 2006 2007 2008 2009 2010 2011 2012-2015 2016 —\i(‘)Zl

Network IDS GA-SVM for l l l l l \ Adversarial ML (AML)

NIDS) with NIDS _
(sv|\/| o [AINAQ5] Intrusion Privacy  Intrusion Email Spam  Survey on [Mogg20]
[ICOINO3] Detection and Preserving Detection Detection Lightweight ~ Scalable [Baxter20]
Visualization SVMfor  with [CISIS10] IDS Network [Lee20]
(RF/SOM) WSNs Proximity [JISIS12] Intrusion [Amalia20]
[MICAIO6] [ARESO08] metrics Detection )
icasppwis) [HU21]
S _ [PRDCO9] Lam21]
« IDS: intrusion detection system Vo1
« ML: Machine Learning [HU 22]
* SVM: support vector machines [Put ] -
«  GA: Genetic Algorithm [Petersen2?]

« RF: Random Forest [Cheng22]

« SOM: Self Organizing Map
MPM: Minimax Probability Machine

+  WMA: Weighted Moving Average 15



Outline

* About UQ/me
=) . DS overview
* IDS? project overview
 AML for NIDS: a survey
 Practical Evasion Attacks for NIDS
* On-going work
* Q&A

16



Definition of Intrusion and IDS 0 S

e [ntrusion

= A set of actions that attempt to compromise the, confidentiality,
Integrity or availability of computing resources via
« Causing Denial of Service
» Creating Backdoor(Trojan Horse)
 Planting Viruses
» Exploiting Software Vulnerability

[Anderson,1980]

17



Intrusion Detection

* The process of monitoring and analyzing the events
occurring in a computer and/or network system in order to
detect signs of security problems

* Primary assumption: Certain (e.g., user, program
activities, networks) can be monitored and modeled
e Steps
1. Monitoring and analyzing host/network

2. ldentifying misuse/abnormal activities
3. Assessing severity and raising alarm

18



Intrusion Detection System (IDS) 0 S

« combination of software and hardware that attempts to
perform “intrusion detection”

* raise the alarm, when possible, intrusion or suspicious
patterns are observed

Attacker

J. Song et al. A Proposal of New Benchmark Data to Evaluate Mining Algorithms for Intrusion Detection, 23rd Asia Pacific Advanced Network Meeting, 2007 19



What is an Intrusion Detection System (IDS)? 0 or quesia
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m Host w
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/N

DD 1999 Dataset features

feature name description type

1 | duration length (number of seconds) of the connection continuous.

2 | protocol_type type of the protocol, e.g. tcp, udp, etc. symbolic.

3 | service network service on the destination, e.g., http, telnet, etc. symbolic.

4 | flag normal or error status of the connection symbolic.

5 | src_bytes number of data bytes from source to destination continuous.

6 | dst_bytes number of data bytes from destination to source continuous.

7 | land 1 if connection is from/to the same host/port; 0 otherwise symbolic.

8 | wrong_fragment number of "wrong” fragments continuous.

9 | urgent number of urgent packets continuous.
10 | hot number of “hot" indicators continuous.
11 | num_failed_logins number of failed login attempts continuous.
12 | logged_in 1 if successfully logged in; 0 otherwise symbolic.
13 | num_compromised number of ~'compromised” conditions continuous.
14 | root_shell 1 if root shell is obtained; 0 otherwise continuous.
15 | su_attempted 1if "'su root" command attempted; 0 otherwise continuous.
16 | num_root number of 'root" accesses continuous.
17 | num_file creations number of file creation operations continuous.
18 | num_shells number of shell prompts continuous.
19 | num_access_files number of operations on access control files continuous.
20 | num_outbound_cmds number of outbound commands in an ftp session continuous.
21 | is_host_login 1 if the login belongs to the "hot" list; 0 otherwise symbolic.
22 | is_guest_login 1 if the login is a “"guest"login; 0 otherwise symbolic.

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

21



NSL-KDD data feature 0 S

F# Feature name Fz Feature name F# Feature name

F1 Duration F15 Su attempted F29 Same srv rate

F2 Protocol type F16 Num root F30 Diff srv rate

F3 Service F17  Num file creations F31 Srv diff host rate

F4 Flag F18 Num shells F32 Dst host count

F5 Source bytes F19 Num access files F33 Dst host srv count

F6 Destination bytes F20 Num outbound emds F34 Dst host same srv rate
F7 Land F21 Is host login F35 Dst host diff srv rate
F8 Wrong fragment F22 Is guest login F36 Dst host same src port rate
F9 Urgent F23 Count F37 Dst host srv diff host rate
F10 Hot F24 Srv count F38 Dst host serror rate
F11 Number failed logins F25 Serror rate F39 Dst host srv serror rate
F12 Logged in F26 Srv serror rate F40 Dst host rerror rate
F13 Num compromised F27 Rerror rate F41 Dst host srv rerror rate
F14 Root shell F28 Srv rerror rate F42 Class label

https://www.unb.ca/cic/datasets/nsl.html

22
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The UNSW-NB15 Dataset

1D | Feature ID | Feature ID | Feature
I | attack cat [ 16| dloss 31| response_body_len
2 | dur 17 | sinpkt 32| ct_srv_src
3 | proto 18] dinpkt 33| ct_state_tt]
4 | service 19| sjt 34| ct _dst Iltm
5 | state 20 [ djit 35 ct_src_dport_Itm
6 | spkts 21| swin 36 | ct_dst_sport_Itm
7 | dpkts 22 | stcpb 37 | ct_dst src_Itm
8 slgytes 23 | dtrcpb 38| is_ftp_login
9 | dbytes 24| dwin 39| ct_ftp_cmd
10| rate 25| tcprtt 40| ct_flw_http_mthd
11| sttl 26 | synack 41| ct_src_Itm
121 dttl 27 | ackdat 42 | ct_srv_dst
13| sload 28 | smean 43 | is_sm_ips_ports
14| dload 29| dmean -
157 sloss 30 | trans_depth

23



The UNSW-NB15 Dataset

Types of attacks Testing dataset Training dataset
Normal 56.000 31,94% | 37.000 | 44,94%
Analysis 2.000 T,14% 677 0,82%
Backdoor 1.746 1,00% 583 0,71%
DoS 12.264 6,99% 4.089 4 97%
Exploits 33.393 | 19,04% | 11.132 | 13,52%
Fuzzers 18.184 10,37% 6.062 7,36%
Generic 40.000 22,81% | 18.871 22,92%
Reconnaissance 10.491 5,98% 3.496 4 25%
Shellcode [.133 0,65% 378 0,46%
Worms 130 0,070/0 44 0,050/0
Total 175.341 100,00% | 82.332 100,00%

24



S NoFeature Name SNo | Feature Name SNo | Feature Name SNo | Feature Name

1 Flow 1D 22 | Flow Packets/s 43 | Fwd Packets/s 64 | Fwd Avg Packets/Bulk
2 | Source IP 23 | Flow IAT Mean 44 | Bwd Packets/s 65 | Fwd Avg Bulk Rate

3 | Source Port 24 | Flow IAT Std 45 | Min Packet Length 66 | Bwd Avg Bytes/Bulk
4 | Destination IP 25 | Flow IAT Max 46 | Max Packet Length 67 | Bwd Avg Packets/Bulk
5 Destination Port 26 | Flow IAT Min 47 | Packet Length Mean 68 | Bwd Avg Bulk Rate

6 | Protocol 27 | Fwd IAT Total 48 | Packet Length Sud 69 | Subflow Fwd Packets
7 | Timestamp 28 | Fwd IAT Mean 49 | Packet Length Variance | 70 | Subflow Fwd Bytes

8 Flow Duration 29 | Fwd IAT Sud 50 | FIN Flag Count 71 | Subflow Bwd Packets
9 | Total Fwd Packets 30 | Fwd IAT Max 51 | SYN Flag Count 72 | Subflow Bwd Bytes

10 | Towal Backward Packets 31 | Fwd IAT Min 52 | RST Flag Count 73 | Init_Win_bytes_forward
11 | Total Length of Fwd Packets | 32 | Bwd IAT Total 53 | PSH Flag Count 74 | Init_Win_bytes_backward
12 | Total Length of Bwd Packets | 33 | Bwd IAT Mean 54 | ACK Flag Count 75 | act.data.pkt.fwd

13 | Fwd Packet Length Max 34 | Bwd IAT Sud 55 | URG Flag Count 76 | min_seg_size_forward
14 | Fwd Packet Length Min 35 | Bwd IAT Max 56 | CWE Flag Count 77 | Active Mean

15 | Fwd Packet Length Mean 36 | Bwd IAT Min 57 | ECE Flag Count 78 | Active Std

16 | Fwd Packet Length Std 37 | Fwd PSH Flags 58 | Down/Up Ratio 79 | Active Max

17 | Bwd Packet Length Max 38 | Bwd PSH Flags 59 | Average Packet Size 80 | Active Min

I8 | Bwd Packet Length Min 39 | Fwd URG Flags 60 | Avg Fwd Segment Size | 81 | ldle Mean

19 | Bwd Packet Length Mean 40 | Bwd URG Flags 61 | Avg Bwd Segment Size | 82 | Idle Std
20 | Bwd Packet Length Std 41 | Fwd Header Length | 62 | Fwd Header Length 83 | Idle Max
21 | Flow Bytes/s 42 | Bwd Header Length | 63 | Fwd Avg Bytes/Bulk 84 | Idle Min

25



Other datasets

e Kyoto dataset

* CIC-IDS2017, CIC-D0S2017, CSE-CIC-IDS2018 and CIC-
DD0S2019

e Korea University — Car hacking dataset
* UQ-loT IDS dataset

26
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* Interpretable, Dependable and Secure Intrusion Detection System
(IDS-IDS)

1) Interpretable (eXplainable)

= White/Black box -> Explanation in Natural language, clear boundary condition/visualization,
etc.

= To justify, control, improve and discover
2) Dependable

» Safe and reliable against accidental/intentional events

3) Secure
= against Poison, Extraction, Evasion Attacks

References:
C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature machine intelligence, May
2019
A. Dadai, M. Berrada, Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAl), IEEE Access 2018
H. Alemzadeh, Dependable Al Systems, IFIP WG 10.4., June 2017, available at:
http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/72/ResearchReports/Alemzadeh-Dependable Al _ML.pdf 28
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Adversarial Machine Learning for Network Intrusion
Detection Systems: A Comprehensive Survey

Ke Hel, Dongseong Kim?, M. R. Asgahar'- J. Sun?
tUniversity of Auckland, New Zealand

°The University of Queensland, Australia

Published in the IEEE Communications Surveys and Tutorials (COMST)
(impact factor: 25.249 (2021), #1 impact factor among all the IEEE
journals)



https://www.comsoc.org/publications/journals/ieee-comst/ieee-communications-surveys-tutorials-editorial-board

Adversarial Attacks - aims

Targeted Untargeted




Adversarial Attacks

« Adversarial Attacks aims to fool a target ML/DL algorithm by adding
Imperceivable perturbations to the input so that its output is different from
the original

* The attacks can be targeted or untargeted

» Targeted attacks force the adversarial input to be classified as a predefined target class
» Untargeted attacks force the adversarial input to be classified as any class that is not the original

class
Target Possible
Class Possible Class 2
Class 1
Original Original > Possible
Class Class Class 3

Targeted adversarial attack Untargeted adversarial attack -



Generating Adversarial Attacks

* In general, adversarial attacks have to satisfy two constraints: Confidence
and Similarity

» Confidence constraint ensures the input is classified incorrectly as the target
class (targeted attacks) or not the original class (untargeted attacks).

» For targeted attacks, the confidence of the target class is maximised
» For untargeted attacks, the confidence of the original class is minimised

 Similarity constraint ensures the input is imperceivable by constraining the
perturbation to be less than some threshold.

33



Adversarial Attacks (AA) settings

AA

settings

|
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Generating Adversarial Attacks (cont.)

OF QUEENSLAND
AUSTRALIA

« The adversarial attacks can be generated mainly under threat models: white-box,
black-box and grey-box

« White-Box (WB) assumes the attacker have completely knowledge of the target
model.

» Therefore, the search for adversarial input is done via gradient descent

= Different white-box adversarial attacks place different emphasis on ensuring confidence and similarity.

* |n general, white-box attacks can be classified as Minimum Norm Attack, Maximum Allowable Attack,
and Regularisation-based Attack

- Black-Box (BB) assumes the attacker have no knowledge of the target model.

= The only output the attacker is able to obtain are the output decision or score. Moreover, the attacker
can only have limited amount of queries to the target model.

= Typical black-box attacks include Transfer-based Attack, Score-based Attack, and Decision-based
Attack

« Grey-Box (GB) assumes the attacker have some knowledge of the target model.

35



Attack
types

Poison

Evasion

Backdoor
[Trojan

Stealing
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Poison attacks el

« AML/DL example:

Poison
samples

F2

/ / " F1
New decision boundary Original boundary
due to poison attacks

37



Poison attacks O QUERSLAND

Why? DL Is data hungry Testing

data

malicious

Lapglled Feature Training via ‘bad’ trained
training : ML model
extraction : i
data algorithms (classifier)
benign
Poisoning@ Training phase Testing phase

* An adversarial sample is an input crafted to cause ML/DL algorithms to misclassify.
Adversarial samples are created at test time, after the ML/DL algorithm has been
trained by the defender, and do not require any alteration of the training process

David Evans, Classifier under Attack, USENIX Enigma 2017
Papernot et al., The Limitations of Deep Learning in Adversarial Settings, Euro S&P 2016, https://arxiv.org/pdf/1511.07528.pdf 38
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[Trojan J
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Evasion attacks

Labelled Training via
L Feature

raining extraction ML

data algorithms

Training phase

* Find samples which a trained model can
misclassify.

David Evans, USENIX Enigma 2017 — Classifiers under Attack

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Testing
data

malicious

Trained
model
(classifier)

benign

Testing phase

Evasion attacks — @
evade trained
model(s); e.g., evade
a classifier

41



Evasion attacks e

" F1
Original boundary
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A summary of DL-based NIDS architectures.

TABLE II: A summary of DL-based NIDS architectures from 2017 to 2020.

Solution Year Target Evaluation Feature Feature Detection Detection Application Main
Network Datasets Extraction Reduction Paradigms Algorithms Metrics
L‘”P‘;;g‘f al- a7 loT NSL-KDD Flow-based None Classification CVAE Offline A““;':“-" '
B | T e NSL-KDD  Flow-based AE T SVM Offline T
al. [40] XGBoost
Yin et al. 2017 General NSL-KDD Flow-based None Classification ENN Offline Accumlc}r.
[41] FPR, Time
Thing [42) 2017  Wireless  Own Dataset  Packet-based AE D{:I“::}f;n Rigﬂ:"m Real-time Accuracy
Classification
J“'Iﬂl"“" 018 General K’éﬂ'ﬁ.ﬁﬂg Flow-based None Classification DNN Offline Fll;,bfﬁpﬂ'
Accuracy,
shone eral. 5018 General NSL-KDD  Eloybased  SNDAE  Classification  Random Offline Fl, FPR,
[44] KDD Cup'99 Forest Time
Yan er al Accuracy,
an el ak-ooapyg General NSL-KDD Flow-based SSAE Classification SVM Offline FPR, TPR,
[43] Time
Naseer et = SO CHNN : Accuracy,
al. [46] 2018 General NSL-KDD Flow-based MNone Classification RNN Offline AUC. Time

AE
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A summary of DL-based NIDS architectures (continued)

Minilr.:.r el . . Outlier AE o ALUC, EER,
al. [-1?] 018 loT Kiisune Packei-based Mone Detection Ensemble Eeal-time Time
Diroeral. .0 loT NSL-KDD Flow-based N Classificati DNN Offli ‘;Tcﬁ'
I4E| i = = 0ONe assihcation 1ne FPR -
{:ff“[ﬁqf L9 loT NSL-KDD  Flow-based SMO Classification SDPN Offline A
- Accuracy,
"‘"";’5;; al. 2019  Genenl KDD Cup'99  Flow-based Ffé*'- Classification CNN Offline TPR, FPR.
Time
. J!'LI:EIJI‘E.I:,T_
Zhang el 5019 General UNSW-NBIS  pycker-based None Classification O & Real-time  TPR, FPR,
al. 1511 CIC. NS00 7 caXGBoost Time
NSL-KDD
KDD Cup™99
"“::‘:‘ﬁ‘;’l};“ 019  General UNSW-NBI5  Flow-based None Classification DNN Offline "““’E{““'}“
= L& CIC-IDS2017
WSN-DS
Precision,
R{‘;‘f"fj]‘;r‘ 1019 loT CIC.IDS2017  Flow-based None Classification 'ﬂﬁh‘f Offline Recall.
B Accuracy
U WS e GRS R Nee QM W ome A
S“;‘j‘;'l‘”' 020 General  CIC-IDS2017  Flow-based None Classification 'ﬂr{fh‘f Offline ""':‘:1‘:';“3"

44



Adversarial Attacks in NIDS

» Adversarial attacks have been mostly studied in Computer Vision
(CV). However, adversarial attacks can cause much more
significant damage In security-sensitive domains such as
Network Intrusion Detection System (NIDS)

* A successful adversarial attack can cause malicious packets
bypass ML/DL based NIDS, which potentially violates the
confidentiality, integrity, and availability of the network.

45



Adversarial Attacks in NIDS (cont.

« Adversarial attacks in NIDS have fundamental differences compared to CV

* Due to the large amounts of network packets being transmitted, the NIDS
extracts numerous features from the packets and classifies the features.
Therefore, simply altering the features does not create transmittable
adversarial packets.

* Network features are highly correlate. Therefore, any perturbation to the
features must convey the correlations. However, the exact correlation
between the features are mostly unknown.

* Network features are also sequentially related. Hence, modification of a
single packet can affect the features of the subsequent packets.

46



Adversarial Attacks — types

* Feature-Level Attacks (FLA)

= directly perturb the input network traffic features

= Although these studies show WB and BB attacks with feature-level perturbations are
effective, they have a common limitation: lack of practicality.

« Generative Feature-Level Attacks (GFLA)

= utilize generative algorithms such as Generative Adversarial Networks (GAN) to learn the
inherent structure within network traffic features and enforce the features to look realistic.

= capture the hidden interdependencies between network features and constrain the feature-
level perturbations to be more realistic.

= However, despite realistic adversarial network features, there is still a significant gap in
transforming the network features into replayable packets.

» Packet-Level Attacks (PLA)

= manipulate the network packets directly rather than network features.

= mark a significant improvement in practical adversarial attacks evading Al based NIDS, as
they can generate replayable packets in the network.

= However, existing adversarial attacks lack a comprehensive evaluation of the
maliciousness of the adversarial examples.
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Adversarial Attacks — Threat models

« Goals (constraints)
= Bounded by [,, ball, where the network features are freely perturbed with an [, ball.

* Bounded by the generative model, where the network features are constrained by generative
models such as GAN to be similar to realistic network features

» Bounded by the packet obfuscation, where packet-level perturbations are bounded by pre-
defined mutation operations.

« Knowledge
= BB: if the attacker has zero knowledge of the classifier and its auxiliary components.

» GB: if the attacker has zero knowledge of the classifier but has some knowledge of the pre-
processing functions.

= WB: if the attacker has complete knowledge of the classifier and auxiliary components.

« Capability
= None, if the attacker cannot obtain the training dataset, or it is not necessary (e.g., the
attacker has WB knowledge)

» Passive, if the attacker can capture both benign and malicious traffic.

« Target models
= ML, DL, ...
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TABLE III: Comparison of adversarial attacks designed to bypass NIDS.

i . . . —— Target . Main
Author Year Type Constraints Knowledge Capability Model Datasets Metrics Limitations
Rigaki etal. 557 FLA ¢, ball WB None Shallow ML NSL-KDD ACCUTACY, o dated dataset
[67] - P : ’ Fl, AUC :
Homoliak er ;¢ PLA . GB None Shallow ML ASNM-NPBO Fl Vigorous Trixl
al. [104] obfuscation and Error
Lin & gl 2018  GFLA  Oenerative GB Passive  Shallow ML NSL-KDD Accuracy  Outdated dataset
[105] model
Wang [68] 2018 FLA £, ball WB None MLP NSL-KDD ’;‘f"&;’é Outdated dataset
Ya“[f;',);]’ al. 2018 FLA £,, ball GB Passive DNN NSL-KDD Fl Outdated dataset
Clements er Accurac e e
y 2019 FLA £ ball WB None Kitsune Kitsune uracy. adversarial
al. [106] £, distance features
. Kitsune, ) )
Hashemi er 2019 PLA Packet WB None DAGMM, CIC-IDS2018 TPR. FPR Vigorows Trial
al. [107] obfuscation . and Error
BiGAN
itove or F‘:‘“f:“r:“: Unrealistic
p ; 'ﬁ' ;8"] 2019 FLA £, ball WB None FNN, SNN BoT_loT *Ka[‘:p:_“ s adversarial
MCC' features
AGMM,
AE, Lack of
Kuppa er al. MA A+Packet L AnoGAN, n
[109] 2019 PLA obfuscation GB Passive ALAD. CIC-IDS2018 F1 mal_lcllcu:ness
DSVDD evaluanon
shallow ML
Alhajjar er i Generative NSL-KDD, Accuracy, Lack of
al. [110] mimdl ] ik model £L] S Shallow ML ;N ew-NB15 FNR replayability
Generative Lack of
Han &t al 2020 PLA model + BB/GB Passive Kitsune Kitsune FN_R’ £2 maliciousness
[70] Packet Distance .
X . evaluation
obfuscation
Generative
Chen er al. model + . MAPE Lack of
2 - s
[111] 2021 GFLA Domain BB Passive Shallow ML CTU-13 FNR i
constraints
Sharon et A Kitsune, Kitsune, Only considers
"2 - .
al. [112] 2021 PLA LSTM BB Passive AE, TF CIC-IDS2017 TPR time delay
Sheatsley er i Extracted NSL-KDD, Lack of
al. [113] e FLA constraints wB S Shallow ML ;N ew-NB15 e replayability
Generative
Zolbayar er . model + L NSL-KDD, Lack of
al [114) 2922 GFLA  popgn  WB/GB/BB - Passive  DNNCMLP - e psaons FNR replayability

constraints

Type:

* Feature-Level Attacks (FLA)

« Generative Feature-Level
Attacks (GFLA)

« Packet-Level Attacks (PLA)

Knowledge:

*  Whitebox (WB)
« Greybox (GB)
« Blackbox (BB)

Capability:
 Passive
* None
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Defenses against Adversarial attacks gt

* have been encouraged to increase the robustness of the model
so that they can correctly classify the adversarial input/attack(s).

« are created by studying the formulation and characteristics of the
adversarial examples and designed to exploit its weaknesses.

« Common defenses include
» Gradient Masking - prevents the gradient of the model to be exposed by the attacker,
even under white-box setting

= Adversarial Detection - adversarial examples possess unigue characteristics that can
be used to distinguish between adversarial and clean input

» Robustness Optimization - increase the robustness of the model directly so it is able
to correctly classify the adversarial input/attacks
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TABLE IV: Comparison of various defence techniques against adversarial attacks and their applicability in the NIDS domain.

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

Type Methods Brief Description Defence Strength Applicability Section
Parame‘ter Gradient Hides the gradient of the model W{?ak defepce. BB attacks '_dD not re- Applicable since gradient masking
Protection ) from attackers to prevent WB at-  quire gradient and can easily bypass . . : VI-A
Masking . . 1s domain agnostic.
tacks. gradient masking.
Uses another neural network to Gl e Rl G Ll Not applicable. Adversarial exam-
Secondary . . mulated to simultaneously bypass both . .
: classify clean and adversarial ex- - ples are not available at training VI-B1
Classifier amples detectors under the limited-knowledge time
P and perfect-knowledge threat model. '
Proiection. Projects  input into  low-  Weak defence. Characteristics in low-
Adversarial Baqle d dimensional space to detect dimensional space are specific to  Applicable but not generalisable. VI-B2
Detection ) adversarial examples. datasets.
Statistics- B elestributional dlffef'ences Weak defence. Statistical characteris- . :
between clean and adversarial ex- . . Applicable but not generalisable. VI-B3
Based amples tics are specific to datasets.
Mutation- Mutates the decision boundary  Strong defence. The adversarial attack
Based randomly to detect adversarial ex- has to be universally adversarial to  Applicable. VI-B4
) ample. bypass this defence.
Input Pre- Filter or transform the input to Weak defence. The transfc-rmatlcins May b::: applicable, but the trans-
rocessing remave advessarial perturbation can be modelled and bypassed with for.manons may remove malicious VI-Cl
process ) ' EOT. traits.
Robustness  Adversarial ~ Trains the model with a correctly g:;rﬁef?{]znzg:i;?::?;iﬁg:l tri?lt?]i Not applicable. Adversarial exam- VLC2
Optimisation Training labelled adversarial example. e ‘ ry ples are not available at training.
classifier.
Post. Modifies the structure of the Weak defence. Multiple stronger at-
Trz;ining model E;fter trair::ing tacks can bypass post-training de-  Applicable but weak defence. VI-C3

fences.
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Gradient Masking O or curmsians

« White-box adversarial attacks requires the gradient to B
be known in order to conduct gradient descent. , o O
« Gradient masking aims to hide the gradient of the O
white-box model from the attacker, so that gradient '
descent cannot find a valid perturbation | © O
: : : O
« Gradient masking can be done via _
= Shattered Gradients - the gradient is non-differentiable, | 77O L. Estimated
numerically unstable, non-existent or incorrect. Perturbation
» Stochastic Gradients - the gradient is randomised — Target's DB

» Vanishing & Exploding Gradients - the gradient vanishes to O
or explodes to infinity

« Gradient masking is limited against black-box attacks
since black-box attacks does not require any gradient
iInformation

52



Adversarial Detection

e aims to detect and reject the adversarial A BO
o)
examples. Ao
* Is often implemented in a plug-and-play manner © ©°
and does not require any modification to the X Teooed
model c222: Distribution B
Distribution A
« Adversarial Detection methods include: Distribution-based
= Distributional-based - adversarial examples are artificially
created and does not naturally occur in the input space.
Therefore, it possess unique characteristics that are
distinguishable from clean examples
= Mutation-based - the similarity constraint makes the
adversarial examples lie close to the decision boundary, e
mutating the decision boundary will cause the output of the _Ranfom DB 1
adversarial example to be drastically different —Rangom DB 2
— Random DB 3

Mutation-based
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Robustness Optimisation

e aims to ensure the adversarial examples is correctly classified by the model

« Common methods include

* Input pre-processing - adversarial perturbations are small, therefore applying filters can remove
the perturbations

» Adversarial training - train the model with correctly labelled adversarial examples so that it
learns the adversarial example

» Post-training modifications - the model’s decision boundary is smoothed so that it can
generalise better for data outside of the training dataset

A B
o © O 5
T o 4 o
@ . o
o o0 @
@ o O
@
Q2 e
i Fil — ined DB
— Toagot's DB —araete i —Prned DB
: . — Target's DB

Input Preprocessing

Adversarial training

Post-training modification
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* IDS overview
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=) - Practical Evasion Attacks for NIDS
* On-going work
* Q&A
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Partial answer for Q2




Introduction ) e

Deep learning have been used extensively in many domains
Network Intrusion Detection Systems (NIDS) is not an exception

Deep learning algorithms are known to be vulnerable to adversarial
examples

Unlike Computer Vision (CV), adversarial examples in NIDS can have a

serious impact
= But most work on adversarial examples are done in CV, not many in NIDS
» Those that have been done in NIDS have done it rather poorly

« We would like to bridge this gap
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Background - NIDS
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Background - NIDS

« Extracts aggregate features from the packets
= Statistics about packet sizes of a connection or in the last few seconds
= Inter arrival times of a connection
» Flags
* Due to the large volume of packets and the use of encryption, the features
does not require examining the payload

* The extracted features are used by detection algorithm to be classified as
benign or malicious

TABLE II: The statistics (features) extracted from each time window A when a packet arrives.

The packet’s... Statistics Aggregated by # Features Description of the Statistics
...size Wi, O; SrcMAC-IP, SrcIP, Channel, Socket 8 Bandwidth of the outbound traffic
. Bandwidth of the
5 Sil Rs; s ¢, Ps. .
eSIze IS:: 51l iy COVsisyr Poys, Channel, Socket 8 outbound and inbound traffic together
...count w; SrcMAC-IP, SrcIP, Channel, Socket 4 Packet rate of the outbound traffic
...jitter Wi, Ui, O; Channel 3 Inter-packet delays of the outbound traffic

Table source: Mirsky, Yisroel, et al. "Kitsune: an ensemble of autoencoders for online network intrusion detection.” NDSS (2018).



Background - Adversarial Examples on NIDS

* Previous works have mostly used adversarial attacks in CV and applied it
directly to modify traffic features
= Does not achieve much, since the features cannot be used to do anything

« Some have modified packets
= A little bit more useful, but they often take random guesses and trial and error
= No evaluation of maliciousness of adversarial example

« We want to formalize adversarial attacks on NIDS and generate realistic
adversarial examples (packets) that are malicious



Contributions ) e

AUSTRALIA

« We design a novel and practical adversarial attack tailored to attack
anomaly-based NIDS called Liuer Mihou (LM) attack, and provide source
code for download.

= https://github.com/XXXX-5/automatic-waddle

 We conduct a comprehensive evaluation of LM attack in a real loT testbed
against five ML-based anomaly detection algorithms (SOM, RRCF, LOF,
OCSVM, and FROCC), and the state-of-the-art DL based IoT NIDS, Kitsune.

« We demonstrate the strength of LM attack by assessing our attacks on
Kitsune with adversarial detection defences (such as Feature Squeezing and
Mag-Net).

 We show empirical results and findings of our experiments, which provide
Insights for future adversarial attacks against NIDS.

64


https://github.com/XXXX-5/automatic-waddle

Threat Model BB or quemsiav

« Our goal
» Modify an existing, detectable sequence of malicious packets to evade detection
» Preserve the malicious behaviour of the packets to some extent

* Focus on loT networks that is much simpler
= Small network size, devices do not have much computation power, and is relatively more periodic

* We know the NIDS uses outlier detection algorithm(s) to classify packets
= More realistic compared to traffic classification

« We know the features extracted
» Reasonable assumption, since there are only a certain number of features that can be extracted

« We can sniff the traffic in the network
» |0oT networks are often connected wirelessly can sniffing packets is rather easy.



Liuer Mihou (LM) attack framework - introduction T o st

AUSTRALIA

a practical adversarial generation algorithm tailored specifically for NIDS that
operates iteratively on each packet of the malicious traffic.

For each packet, the surrogate NIDS first classifies the packet.

If the surrogate classifies the packet as malicious, it is likely to be classified
as malicious by the target model.

For each malicious packet, LM first searches for an optimal set of mutation
operations on the packet that minimizes the anomaly score produced by the
surrogate NIDS.

Next, the optimal mutation operations are applied to the malicious packet,
transforming it into adversarial packets containing the modified malicious
packet and some redundant packets as byproducts.

Finally, the adversarial packets are written to the output file in place.
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Practical Evasion Attack Generation for NIDS

Train a surrogate detection algorithm given the
features and benign traffic

lteratively classify each malicious packet with
the surrogate model

If it IS classified as malicious, search for a set of
mutation operations that minimises the anomaly
score

Inject the adversarial packets in place and
evaluate

o

N\ /
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Liuer Mihou attack framework 0 S

1. Identify the 2. Search for A 3. Apply the 4.Inject the —L
. malicious packet packet mutation packet mutation adversarial \»
with surrogate that minimises to the malicious I packets in
‘ model anomaly scores packet . place |
L > > > I >
>
Input Packets Malicious Packet Mutation Space Adversarial Packets Output Packets

« Train a surrogate detection algorithm given the features and benign traffic
* lteratively classify each malicious packet with the surrogate model

* If it Is classified as malicious, search for a set of mutation operations that minimises the anomaly
score

= Delay the packet by some time
» |nject redundant packets in front of the malicious packet

 With the mutation operations, create a low-dimensional space where each dimension represents a
mutation operation

« The search is done via heuristics search algorithms, in our case, a hybrid between PSO and DE
= Particle Swarm Optimization (PSO) and the Differential Evolution (DE) algorithms

* Inject the adversarial packets in place
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Mutation Operation and Objective Function C-JRe

AUSTRALIA

A set of mutation operations are can be applied to a malicious packet to change the
extracted features of the packet with minimal change of the content.
= Packet Delay: Delay the arrival time of a packet, which changes the inter-arrival time distribution.

= Packet Injection: Inject redundant packets before a packet in the same connection, which changes
packet-size distribution without affecting the original payload.

The objective function formulated as the optimisation problem, done for each
malicious packet (p):

min max{g’(p(p")) : p’ € m(pi)}

= where M is the space of all possible mutations, m is a specific mutation operation, p,is the i'" malicious
actket, 2'is the set of adversarial packets after mutation, g’ gives the anomaly score based on the input
eature.

The adversarial packets contain the modified malicious packet and several
redundant packets.

The aim is to reduce the maximum anomaly score of the adversarial packets so not
to introduce more malicious packets.

In case there are still malicious packets above the surrogate threshold, we can
recursively run LM on the output adversarial packets uniil it reduces all packets
below the surrogate threshold.
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Packet Vectorisation B o ueexsiano

AUSTRALIA

 To efficiently search for the mutation operations, representation of mutation
operations into low-dimensional vectors is abstracted in the mutation space

(W, psi).
« With the mutation operations, defined W as a two-dimensional space with

(t,, n.):
= Modified arrival time of the packet (t,,), which represents packet delay.
= Number of redundant packets inserted before the packet (n.), which represents packet injection.

» For example, (0.4, 4): delay the malicious packet by 0.4 seconds and place four redundant
packets before the malicious packet.

 For packet injection, the three methods of assigning arrival time and payload
size of the redundant packets.
» Random Assignment (RA). Seeded Assignment (SA). Uniform Assignment (UA)
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Injection methods

» Three methods of assigning arrival time and payload size of the redundant

packets.

» Random Assignment (RA). randomly assigns the arrival time and payload size of each redundant
packet. We have found this method causes the cost function to be non-deterministic because the
arrival time and payload size of the redundant packets at the same position are different in each
iteration

= Seeded Assignment (SA). SA seeds the random number generator with the value of n_ before
generating the payload sizes for each redundant packet.

= Uniform Assignment (UA). A new dimension is introduced in the mutation space, sc , which
governs the payload size of all redundant packets. As a result, the cost value is deterministic and
piece-wise constant around each integer value of n,

» Selected UA for creating redundant packets, which suggest that uniform
payload sizes are also characteristic of benign traffic in the dataset.
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Search Algorithms 0 S

* The typical approach to solve optimization problems involving non-
differentiable and non-invertible functions is to use meta-heuristic algorithms.

« Meta-heuristic algorithms often have a master strategy that iteratively
generates solutions, and the optimal solution is discovered by continuously
evolving the solutions according to the fithess function.

 Liuer Mihou utilizes a hybrid heuristic search algorithm that combines PSO
and DE to search for the optimal mutation, which we refer to as PSO-DE.

« The algorithm is designed to preserve the strengths of both the algorithms.

* The vanilla PSO is particularly prone to get stuck in local optima, Hence, DE
IS Introduced to increase the exploration ability of the search algorithm.
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loT Testbed
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Datasets ) Sy

« Two datasets: benchmark Kitsune dataset and dataset captured from our
own loT testbed

* The benign data

= consists of packets generated via commands such as turning off light bulbs, playing music on
Google Home, etc, over 30 minutes.

 The malicious data

= consists of two main types of malicious attacks, probing and Denial of Service (DoS), all targeted
at Google Home Mini.

= Distributed attacks such as Mirai Botnet were excluded since it requires compromising other IoT
devices, which is outside the scope of our threat model.

» Probing attacks include Port Scan (PS) and OS Detection (OD), and we repeat PS twice and OD
four times. DoS attacks include HTTP Flooding (HF) with LOIC at the highest intensity for 6
minutes.
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Target DL/ML Algorithms and surrogate model Y or iz

AUSTRALIA

 Target/victim models
» Kitsune, a state-of-the-art NIDS for 10T network
» Self-Organising Maps (SOM) implemented with the python package MiniSOM.
» Robust Random Cut Forest (RRCF) implemented with the python package rrcf.
» |Local Outlier Factor (LOF) implemented with sklearn.
» One-Class SVM (OCSVM) implemented with sklearn.

. Flast I_'?’_andom projection-based One-Class Classification (FROCC), the state-of-the-art One-Class
classifier

« Surrogate model

= g vanilla autoencoder written in TensorFlow 2

» The encoder consists of three dense layers with 32, 8, and 2 neurons, respectively, and the
Decoder consists of three dense layers with 8, 32, and 100 neurons. All layers use the ReLU
activation function except for the last layer of Decoder, where it uses Sigmoid.

= The architecture of the surrogate model is arbitrarily chosen, and we intentionally did not conduct
any hyperparameter search to find the optimal structure.

» The surrogate model is trained on all benign packets with one epoch to mimic online detection.

= The threshold of the surrogate model is determined as three standard deviations away from the
mean of the anomaly scores on benign data.
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 Performance Metrics

. Trui Ntegative Rate (TNR): measures the ratio of packets in benign traffic correctly identified as benign
packets

. {\/Iaflfi_cious Detection Rate (MDR): measures the ratio of packets classified as malicious in the malicious
raffic.

« MDR is similar to True Positive Rate (TPR), but since we do not have ground truth labels, we use
MDR instead

 Evasion Metrics

» Detection Rate (DR) and Evasion Rate C§ER|2, with each metric measured for adversarial traffic (ADR
and AER) and replayed traffic (RDR and RER).

» DR measures the ratio of the adversarial/replayed packets that have been classified as malicious and
8'ers gn )lndlcatlon of the robustness of NIDS under adversarial/replayed traffic (higher is better for
efender).

» ER measures the percentage of the adversarial/replayed packets that evade detection compared to the
original attack, indicating the effectiveness of the adversarial attack (higher is better for attacker).

« Semantic Metrics

= Semantic metrics compare the severity of the adversarial traffic on the target system to the original,
unmodified attack

» For DoS attacks, we measure the Round-Trip Time (RTT? and calculate the Relative Round-trip Delay
(RRD) of the device under flooding attacks compared to the normal environments.

= For Probing attacks, we comﬁare Ports Scanned (PS), the Relative Ports Scanned (RPS) and Relative
Time Delay (RTD) between the adversarial and unmodified attacks.
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Experimental Results

« Anomaly score of three types of
traffic

= Qriginal: original detectable attack

» Adversarial: theoretically generated
adversarial packets

» Replayed: replay of adversaria packet

« Adversarial packets are evasive
* Replayed is not

» Due to inherent propagation delays, the
arrival time will not be exact

Attacks

« Port Scan (PS)

* OS Detection (OD)
« HTTP Flooding (HF)
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Experimental Results - Evasiveness of Adversarial Traffic

» Replayed traffic is less evasive
compared to adversarial traffic,
iIndicated by RER being higher
than AER for all attacks.

» Adversarial traffic Evasion Rate (AER)
» Replayed traffic Evasion Rate (RER)

 Kitsune and FROCC are highly
vulnerable to LM, but other
anomaly detectors are not.

» Adversarial traffic Detection Rate (ADR)
of LM with Kitsune and FROCC is O for
all three attacks, while other detection
algorithms have ADR higher than O.

THE UNIVERSITY
OF QUEENSLAND
AUSTRALIA

Table 1: DR and ER of the adversarial/replayed traffic gener-
ated with Liuer Mihou against various NIDS.

Attack ML TNR MDR ADR RDR AER RER
PS Kitsune 1.000 0.74 0.00 0.00 1.00 1.00
PS SOM 0.993 0.39 0.05 0.15 0.94 0.83
PS LOF 0.999 0.98 0.98 0.98 0.00 0.00
PS RRCF 0.992 0.93 0.71 0.71 0.24 0.23
PS OCSVM 0.999 0.99 0.98 0.99 0.01 0.00
PS FROCC 1.000 0.50 0.00 0.00 1.00 1.00
OD Kitsune 1.000 0.41 0.00 0.25 1.00 0.39
OD SOM 0.993 0.66 0.29 0.53 0.55 0.19
OD LOF 0.999 0.95 0.95 0.97 0.00 -0.01
OD RRCF 0.995 0.64 0.46 0.55 0.28 0.15
OD OCSVM 0.999 0.84 0.83 0.88 0.00 -0.05
OD FROCC 1.000 0.19 0.00 0.07 1.00 0.63
HF Kitsune 1.000 1.00 0.00 0.33 1.00 0.67
HF SOM 0.993 1.00 0.91 0.77 0.09 0.23
HF LOF 0.999 1.00 1.00 1.00 0.00 0.00
HF RRCF 0.978 1.00 1.00 1.00 0.00 0.00
HF OCSVM 0.999 1.00 1.00 1.00 0.00 0.00
HF FROCC 1.000 1.00 0.00 0.01 1.00 0.99
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Experimental Results - Maliciousness of Adversary B o e

« HTTP Flooding (HF) attacks (Table 4)

= The goal is to make the Google Home device
unresponsive, so we measure the average round trip
time using ping

» The delay in RTT caused by the replayed HTTP
flooding attack is only a small proportion of the

unmodified HTTP flooding, but it is still larger than
normal

» the increase of RTT of the adversarial traffic generated
with LM was barely noticeable.

« OS Detection (OD) attacks (Table 5)

» can fully scan all the ports scanned by the unmodified
attack with less than a ten percent increase in Relative
Time Delay (RTD) for LM.

* Port Scan (PS) attacks (Table 5)

= can scan over 90% of the original ports but takes ten
times more time than the original Port Scan attack.

Table 4: Comparison between original and adversarial HTTP Flooding
attacks.

Traffic Type RTT (ms) RRD
Normal 6.602 1.000
Original HF 173.393 26.264
Liuer Mihou HF 10.303 1.561

Table 5: Comparison between original and adversarial scanning attacks.

Traffic Ports RPS Time(s)  RTD
Scanned

Original OD 155 1 1,654.55 1.00

Liuer Mihou OD 155 1 1,792.52 1.08

Original PS 155 1 1.99 1.00

Liuer Mihou PS 150 0.968 19.99 10.04
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Against Adversarial Defence I S

Table 9: Detection result for Kitsune with Feature Squeezing,

* |Introduce two adversarial detectors as FS Prediction  Kitsune Prediction
d efe nce Traftic Clean Adv. Benign  Malicious  Total
= Feature Squeezing (FS) ﬁ;mgn I]ﬂ? 12? 1:;120 I.‘?,’? ]24;1;];]
+ Mag-Net =B A
« The detectors first detect if the input is Obw 207t o a0 s
1 ODgep 33571 0 33571 8313 33571
adversarial or clean, then the NIDS detects o s e ot i
the input as benign or malicious. oy 3740 0 a0 0 T
rep Rl AR 366457 36657
° FS CannOt deteCt the adversa”al examples Table 10: Detection result for Kitsune with Mag-Net.
« Mag-Net detects the adversarial examples, Mag Net Prediction _ Kitsune Prediction
but the reformlng Stage makes the Traffic  Clean Adwv. Benign  Malicious  Total
malicious examples evade detection Benign M40 0 M0 0 M0
PS.av 750 1392 2142 i 2142
PSrep 702 1550 2252 ] 2252
(B]0] TA00 20624 27789 235 28024
Oy On62 18412 28074 i 28074
ODyep Ta74 25897 33571 i 33571
HF 3322 Ha0445 B0l 18 H40 GA0TET
HF .4 690 36750 37440 i 37440
HFsep 728 35925 36653 i 36653
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« Data issues
= No standard AE benchmark dataset for NIDS
= Structured Data - cannot freely modify the features
» Sequentially Related - the same packet will produce different features depending on previous packets
= published dataset is i) not general and has to be anonymised, ii) often have truncated payload

« Transferability: Evasiveness and Maliciousness trade-off

" Liuer_tl\r/llihou Is a transfer-based attack that leverages adversarial transferability across ML/DL
algorithms.

» Since knowing the actual detection model is infeasible in practice, the similarity of the decision
boundary cannot be increased. Therefore, to increase evasiveness, the attacker have to rely on
lowering the threshold value of the surrogate model.

= |owering the surrogate threshold will inevitably lower the maliciousness of the adversarial traffic.

 \Weakness of Adversarial Defence

= We used two plug-and-play adversarial defence methods: Feature Squeezin? and Mag-Net. These
defences were des%]ed initially for classification algorithms, and the results from our experiment have
shown that both methods are unsuitable in the NIDS domain.

» First, packet-level attacks make large changes in the input feature and have realistic distribution as
benign traffic, and adversarial detectors that intentionally ignore small perturbations, such as Feature
Squeezing, fail to detect the adversarial examples.

= Second, only benign traffic is available to train the adversarial detectors under a realistic NIDS threat
model. Therefore, the adversarial detector cannot distinguish between adversarial and malicious traffic,
classifying all attacks as adversarial.
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Outline

* About UQ/me

* IDS overview

* IDS? project overview

 AML for NIDS: a survey

 Practical Evasion Attacks for NIDS
=) . On-going work

* Q&A
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On-going research ) ey

=) - UQ loT testbed and data collection

= |[nitial data Is available
= Additional datasets will be collected

e Attacks

* Practical and Replayable Evasion Attacks for Deployed ML/DL based IDS
In UQ loT network.

= AML based evasion attacks for Autonomous vehicle networks (CANBuUS)

 Defences

= MTD based adversarial defences
» Explainability (e.g., Feature to class /Decision boundary visualization)
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UQ loT Testbed Setup 0 S

-------- Wi-Fi connection

Ethernet connection Generating high-
speed flooding
attacks
Internet
* Pool PC (Kali Linux) — Attacker: w
o Generate cyber-attacks |
Laptop < > -
. : (for remotingto --------- Router Fool PC (Kali Linux)
Raspberry P.I. — Raspberry Pi) ~
o Network Bridge and Wi-Fi AP
: Ethernet R LT ..
o Data Collection s
Raspberry Pi T, e
_ »| (Network bridge and ———» ﬁ?;ﬁigaat: ELQEF;;SSFH .'
* 0T devices: data collection)
o Generate benign samples CWi-Fi
o Attack targets i
loT Devices
e_g. smartphones, cameras,

v

smart bulbs, Google Mest 84




List of lOT devices

THE UNIVERSITY

No. Device Name No. Device Name
1 Smartphone 1] 2 Smartphone 2
3 SmartBulb 1l 4 Smart Bulb 2
5 Smart Clock1] 6 Smart Clock 2
7/ IP Cameral 8 IP Camera 2
9 Google Nest Mini 1| 10 Google Nest Mini 2
11 Smart Plug 1] 12 Smart Plug 2
13 SmartTV| 14 Telnet Raspberry Pi
15 Bridge Raspberry Pii 16 Pool PC
17 Router; 18 Laptop
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Data collection

Generate Network Packets
from:

* loT devices — Benign
Samples

« Attacker — Attack Samples

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Benign Samples

Streaming videos and music
Checking social media

Adjusting brightness and colours of
bulbs

* elc.

7 days of data mimicking daily activities
of devices for a whole week

= 5 weekdays
= 1 Saturday
= 1 Sunday
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Data collection

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

Attack Samples
* O types of cyber-attacks:

Host Discovery

Port Scanning

Service Detection

Generate Network Packets

from: ARP Spoofing Telnet Brute-force SYN Flooding
' ACK Flooding HTTP Flooding UDP Flooding

* loT devices — Benign
Samples dCollected separately for each device

« Attacker — Attack Samples

labelling)

under each attack type (convenient for
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Dataset Summary O QUeENswD

e Features: 107

No., Date_Time, Src_Port, Dest_Port, Protocol, Length, Label, 100 extracted features

« Size: 70.8GB Label Number of Packets Percentage
Normal 22480614 54.294%
UDP Flooding 8392711 20.270%
ACK Flooding 6141155 14.832%
SYN Flooding 3923876 9.477%
HTTP Flooding 402252 0.972%
Service Detection 38908 0.094%
Port Scanning 16519 0.040%
Host Discovery 6120 0.015%
Telnet Brute-force 2167 0.005%
ARP Spoofing 661 0.002%
Total 41404983 -

He, Ke, Kim, Dan, Zhang, Zhien, Ge, Mengmeng, Lam, Ulysses, and Yu, Jiaqi(2022). UQ IoT IDS dataset
2021. The University of Queensland. Data Collection.https://doi.org/10.48610/17b44bb
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Building ML/DL models for NIDS I S

« Comparison with Kitsune

CNN RNN RF Kitsune

Accuracy 99.62% 99.65% 99.98% 94.99%
Training Time 50 min 700 min 1 min 2 min
False Positive Rate 0.28% 0.19% 0.02% 0.47%

« Supervised Learning Models: lower False Positive Rates, higher Accuracy
 Kitsune: much faster than Neural Networks
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On-going research ) ey

* UQ loT testbed and data collection
= |nitial data I1s available
= Additional datasets will be collected

m) . Attacks

* Practical and Replayable Evasion Attacks for Deployed ML/DL based IDS
In UQ loT network.

= AML based evasion attacks for Autonomous vehicle networks (CANBuUS)

 Defences

= MTD based adversarial defences
» Explainability (e.g., Feature to class /Decision boundary visualization)
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On-going work I S

ML/DL based IDS in UQ loT network.

= Evasiveness
= Maliciousness (Attack impact)

* Pool PC (Kali Linux) — Attacker:

o Generate cyber-attacks |
Laptop

for remotingto p--------- Hnut}/ - C (Kali Linm——
( g /—

Raspbery Pi)
/ éthernet JIPCTLEREEY ..

Fas herhv- Pi
(Metworky br

* |oT devices: data cqlig¢ction)

o Generate benign samples E
o Attack targets :

D 4
loT Devices
e_g. smartphones, cameras,
smart bulbs, Google Mest 91

v

v




UQ In-Vehicle Testbed O L

ECU1 (Master) ECU2 (Attackef)

CAN-BUS Shield

Wiring and adding
registers are required

Arduino Uno

Registers USB CAN analyser
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On-going research ) ey

* UQ loT testbed and data collection
= |nitial data I1s available
= Additional datasets will be collected

e Attacks

* Practical and Replayable Evasion Attacks for Deployed ML/DL based IDS
In UQ loT network.

= AML based evasion attacks for Autonomous vehicle networks (CANBuUS)

m) - Defences

= MTD based adversarial defences
» Explainability (e.g., Feature to class /Decision boundary visualization)
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MTD based adversarial defenses

THE UNIVERSITY
% OF QUEENSLAND
AUSTRALIA

 What to move

= \We are operating in a rather limited
space

» Consider changing the detection
algorithm and/or feature extractor

* How to move

» Redundancy is not really applicable in
the context of adversarial defence

» Focus on shuffling and diversity

 When to move

= Either change the model on a per
guery basis or per time interval

» Moving a target does not incur much
cost, thus we can move frequently

Previous studies in MTD inspired adversarial
defence have broken down “how to move”
into three stages
- Model diversification - generate diverse
range of models
- Model selection - select all or partial
models to be used in classification
- Model detection - how to use the selected
models to classify the input
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Process of MTD — on-going work e

* Trains a pool of models with

» Feature mapper mutation - randomly alter kitsunes feature mapper
Model mutation - use different anomaly detectors
Parameters mutation - perturb weights and biases of a trained kitsune model

Training data mutation - use a subset of data to train each model, can be done in conjunction with
other mutation techniques

« Evaluate each model on benign data to calculate threshold, and

remove models that have lower TNR than the original model

= Note this will not filter out models that classify everything as benign (e.g. IF and some
OCSVM models)

 During evaluation, a random model is picked to process every
1000 packets



Explainability vs. interpretability

* Lipton (2018) and Rudin (2019) provides similar definitions:

* Interpretability provides transparency and answers “How does the
model work?”

» Intrinsically explainable models can be considered transparent. However, it requires the
features to be meaningful

« Explainablility answers “What else can the model tell me?”
= Post hoc explanations with textual or visual explanations

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57.
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215. 96



Existing Explainability Methods

Intrinsically explainable models Post hoc explanation methods
« Simple models where the decision . goh%med)?r;neondseicl)sn\évlhere the decision function
function is directly explainable - Simplify local area of the model with linear
= e.g. decision tree, linear regression function that are explainable.
. . : * e.g., SHAP, LIME, DeepLIFT _ _
The features have to be informative - Visualise features with dimensionality
reduction
Intrinsically Explanable Models Post hoc Explanation
Input = ML Model —  Output Input ~ —{ ML Model —{ Output
Direct
" _ | Local |
Explanation > Explanation )
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Explainability — some questions to answer

« Which features contribute most towards classifying a malicious packet as
abnormal?

« Which features contributes most towards the sequence of packets?
* How can we visualise the decision boundary of the NIDS?

Input Selection Feature Reduction ‘isualisation Limitations

Directly draw the Cnly applicable for

Direct Visualisation || Mot needed - equation of the  —— i
decision boundary simple models

Mot needed -
Classify the selected
: ; Meshgrd from the | | input with model | | Reguires input to be
Mesh Grid input feature space visualise the low-dimensional
distribution of output
Densemap Allinputs in the || PCA. TSNE, etc L+ L Exact boundary is

dataset unclear

Generate Input that
GAM based = Delongs to another  —— - Autoencoder g Plot the reduced input — 1
class with GAM

Exact boundary is
unclear

Do no provide high
level information,

Create adversarial

Adversarial based | exan’:ﬁlelisuf the ——»= PCA, TSNE. etc | i since perturbation is
P small
Mone if low Decode the samples S
. . - : Training an good
Autoencoder based | Create meshgrid from | | dimensional latent | | and classify the || autoencoder is

latent space of AE space, else PCA, decoded samples

TSME with model difficult




Outline

* About UQ/me

* IDS overview

* IDS? project overview

 AML for NIDS: a survey

 Practical Evasion Attacks for NIDS
* On-going work

) . Q&A
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Thank you! Q&A

Adversarial Machine Learning in Network Intrusion Detection System

Associlate Professor Dan Kim

Deputy Director of UQ Cyber
dan.kim@uq.edu.au




Take aways

* Al (ML/DL) can be used to detect network intrusion.

* Evasion attacks can be generated at network packet
level.

* More practical attacks need to be developed.

* Defence against Adversarial attacks has to be developed
more.
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MTD vs Ensemble R o ueensiany

Characteristic Ensemble MTD
Philosophy Combine prediction of multiple Constantly switch between (strong)
models (often weak) to become models to make the model harder
more robust to attack
Goal Create diverse set of models Create diverse set of models
Output Average / majority vote The chosen model’s output
Difficulty for attacker Fool more than half of the Fool all of the models
ensemble
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