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Interdisciplinary Research



My Education, Research and Funding

Master’s, 

2001–2003

• Crypto HW design

• AI for Network 
Security

PhD, 
2003–2008

• Security & Privacy 
for Sensor Nets

Postdoc, 

2008–2011

• Security and 
Dependability

Academic, 

2011 – present.

• Cybersecurity
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Research outcomes summary
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Grants secured: approx. total 
2.3M USD 

160+ research papers

5600+ Google citations

Funded by South Korea, 
NATO SPS, USA, Japan, NZ, 

Qatar, Australia 



International Collaborators
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• K. Trivedi (Duke U) 

• J. Cho (Virginia 

Tech)

• D. Huang (Arizona 

State U.)

• US ARL

• P. Maciel (FUPR, 

Brazil)

• E. Andrade 

(FRUP, Brazil)

• Neeraj Suri (Lancaster, U.K)

• Armin Zimmermann (TU L, Germany)

• R. Natella (USNFII, Italy)

• A. Haqiq (H1U, 

Morocco)

AUS/NZ

• J. Jaccard 

(Massey)

• I. Welch (VUW)

• J. Hong (UWA)

• …

Korea

• H. Lim (Kentech)

• Y. Paek (SNU)

• HK. Kim (Korea U)

• HS. Kim (SKKU)

• J. Park (KAU)

Japan

• F. Machia (Tsukuba)

• K. Khan, A Nhlabatsi, N Fetais  (QU, Qatar)



• Editorial Board Member 
▪ Associate Editor, IEEE Communications Surveys and Tutorials

(impact factor: 25.25 (2021), #1 impact factor among all the 
IEEE journals), 2021 - present.

▪ Editorial Board Member, Elsevier Computers and Security
(impact factor: 4.438), 2019 - present.

▪ Editorial Board Member, Elsevier Computer Networks
(impact factor: 4.474), April 2022 - present.

• General (co-)chair for conferences
▪ The 54th IEEE/IFIP Int. Conf. on Dependable Systems and 

Networks (DSN 2024) to be held in Brisbane, Australia.

▪ The 24th Australasian Conf. on Information Security and Privacy 
(ACISP 2019)

▪ The 22nd IEEE Pacific Rim Int. Sym. on Dependable Computing 
(PRDC 2017)

Professional activities (Dan Kim)

9

https://www.comsoc.org/publications/journals/ieee-comst/ieee-communications-surveys-tutorials-editorial-board
https://www.journals.elsevier.com/computers-and-security/editorial-board
https://www.journals.elsevier.com/computer-networks


My Research areas: Cyber G.A.M.E
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• Model-based Cyber Security Risk Analysis
Graphical Security 
Models (GSM):

• Securing AI systems and Cybersecurity 
using AI techniques

AI for Cybersecurity & 
Cyber Security for AI:

• Resilient and Proactive Cyber Defence
Moving Target 
Defence (MTD):

• Red team and Blue team Automation & 
Evaluation

Evolving Attacks and 
Defense Automation:



My Research areas: Cyber G.A.M.E – PhD students
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• IoT: Kok Onn Chee (PhD students, UQ)

• Vehicle nets: Nhung Nguyen (PhD students, UQ)

Graphical Security 
Models (GSM):

• AML for IoT: Ke He (PhD student, U Auckland)

• AML for Networks: Subrat Swain (PhD student, UQ/IITD)

• AML for vehicles: Isha Pali (PhD student, UQ/IITD)

• ML/DL for Distributed IDS: Ulysses Lam (PhD student, UQ)

AI for Cybersecurity & 
Cyber Security for AI:

• Against AI powered attacks: Tina Moghaddam (PhD 
student, UQ)

Moving Target 
Defence (MTD):

• Red team automation using DRL: William Li (PhD 
student, UQ)

Evolving Attacks and 
Defense Automation:



AI for cyber security & cyber security for AI

• Q1: What/how can we use AI for Cybersecurity?

• Q2: How can we make AI secure/robust?



My recent R&D project related to AI

13

Project Title Funded by Amount Years Role

Resilient Learning-based Defense in 

Adversarial Uncertain Environments

The USA RDECOM 

International 

Technology Center -

Pacific (ITC-PAC) and 

the US Army Research 

Lab (ARL)

420K USD 2020-

2023

PI

Cyber Defenses and Their Assessment for 

Resilient Autonomous Systems 

(to be awarded)

The USA RDECOM 

International 

Technology Center -

Pacific (ITC-PAC) and 

the US Army Research 

Lab (ARL)

420K USD 2023-

2026

Co-PI

• ML/DL based IDS for SDN/vehicle nets

• Continual learning

• Federated learning

• Intrusion response system (IRS)



• Worked on ML for cybersecurity since 2001
▪ Master thesis (Machine Learning techniques for Network Intrusion Detection) in 

2003
▪ A part of PhD thesis - Privacy preserving data mining techniques for Sensor 

Networks in 2008

• Published research papers in ML/DL for cybersecurity
▪ Host/Network Intrusion Detection
▪ DDoS attacks detection
▪ Spam (e-mail) detection
▪ Android malware detection
▪ AI for cyberattacks and defense automation

• Security for AI
▪ AML in images
▪ AML for IDS
▪ Privacy for ML/DL

My experience in AI (Machine/Deep learning)
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My research on AI security & Security for AI (2001-present)
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2001-2002

Host based IDS 

with ML/Data 

mining approach 

[WISC02/KISC02]

2003

Network IDS 

(NIDS) with 

SVM 

[ICOIN03]

2004

Web attack 

detection with 

HMM 

[W2GIS04]

2005

GA-SVM for 

NIDS 

[AINA05]

NIDS with 

Hybrid Feature 

Selection 

[CISC05]

2006

Intrusion 

Detection and 

Visualization 

(RF/SOM) 

[MICAI06]

2007

NIDS with 

RF&MPM

[CIS07]

2008

Privacy 

Preserving 

SVM for 

WSNs

[ARES08]

2009

DDoS 

detection 

with Traffic 

Matrix and 

WMA

[ISA09]

Intrusion 

Detection 

with 

Proximity 

metrics

[PRDC09]

2010

Email Spam 

Detection

[CISIS10]

2011

DDoS 

detection 

with GA 

based 

optimized 

traffic 

matrix

[IMIS11]

2012-2015

Survey on 

Lightweight 

IDS 

[JISIS12]

Scalable 

Network 

Intrusion 

Detection

[ICA3PPW15]

2016 - 2021

Android 

Malware 

detection with 

ML & DL

[ICSSA18][Trust

com19m]

• IDS: intrusion detection system

• ML: Machine Learning

• SVM: support vector machines

• GA: Genetic Algorithm

• RF: Random Forest

• SOM: Self Organizing Map

• MPM: Minimax Probability Machine

• WMA: Weighted Moving Average

Adversarial ML (AML)

[Mogg20]

[Baxter20]

[Lee20]

[Amalia20]

[Liu21]

[Lam21]

[Yu21]

[Hu22]

[Petersen22]

[Cheng22]

…

RL using HE in 

Cloud [IEEEA20]

DL for CAN 

attacks 

detection 

[SPIE20]
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• Intrusion
▪A set of actions that attempt to compromise the, confidentiality, 

integrity or availability of computing resources via
• Causing Denial of Service

• Creating Backdoor(Trojan Horse)

• Planting Viruses

• Exploiting Software Vulnerability

Definition of Intrusion and IDS

17[Anderson,1980] 



• The process of monitoring and analyzing the events 
occurring in a computer and/or network system in order to
detect signs of security problems

• Primary assumption:  Certain (e.g., user, program 
activities, networks) can be monitored and modeled 

• Steps
1. Monitoring and analyzing host/network

2. Identifying misuse/abnormal activities

3. Assessing severity and raising alarm

Intrusion Detection

18



• combination of software and hardware that attempts to 
perform “intrusion detection”

• raise the alarm, when possible, intrusion or suspicious 
patterns are observed

Intrusion Detection System (IDS)

19

 

The 

Interne

tAttacker

Internal Network

Firewall

IDS

IDS

J. Song et al. A Proposal of New Benchmark Data to Evaluate Mining Algorithms for Intrusion Detection, 23rd Asia Pacific Advanced Network Meeting, 2007



What is an Intrusion Detection System (IDS)?
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NSL-KDD data feature
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https://www.unb.ca/cic/datasets/nsl.html 

https://www.unb.ca/cic/datasets/nsl.html


The UNSW-NB15 Dataset
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The UNSW-NB15 Dataset
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Intrusion Detection Evaluation Dataset (CIC-IDS2017)
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• Kyoto dataset

• CIC-IDS2017, CIC-DoS2017, CSE-CIC-IDS2018 and CIC-
DDoS2019

• Korea University – Car hacking dataset

• UQ-IoT IDS dataset

• …

Other datasets

26
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• Interpretable, Dependable and Secure Intrusion Detection System 
(IDS-IDS)

1) Interpretable (eXplainable)
▪ White/Black box -> Explanation in Natural language, clear boundary condition/visualization, 

etc.

▪ To justify, control, improve and discover

2) Dependable
▪ Safe and reliable against accidental/intentional events

3) Secure 
▪ against Poison, Extraction, Evasion Attacks

IDS2

28

References:

• C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature machine intelligence, May 

2019

• A. Dadai, M. Berrada, Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI), IEEE Access 2018

• H. Alemzadeh, Dependable AI Systems, IFIP WG 10.4., June 2017, available at: 

http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/72/ResearchReports/Alemzadeh-Dependable_AI_ML.pdf

http://webhost.laas.fr/TSF/IFIPWG/Workshops&Meetings/72/ResearchReports/Alemzadeh-Dependable_AI_ML.pdf
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Adversarial Machine Learning for Network Intrusion 

Detection Systems: A Comprehensive Survey

Ke He1, Dongseong Kim2, M. R. Asgahar1, J. Sun1

1University of Auckland, New Zealand

2The University of Queensland, Australia

Published in the IEEE Communications Surveys and Tutorials (COMST)

(impact factor: 25.249 (2021), #1 impact factor among all the IEEE 
journals)

https://www.comsoc.org/publications/journals/ieee-comst/ieee-communications-surveys-tutorials-editorial-board


Adversarial Attacks - aims 

AA aims

Targeted Untargeted



• Adversarial Attacks aims to fool a target ML/DL algorithm by adding 
imperceivable perturbations to the input so that its output is different from 
the original

• The attacks can be targeted or untargeted
▪ Targeted attacks force the adversarial input to be classified as a predefined target class

▪ Untargeted attacks force the adversarial input to be classified as any class that is not the original 
class

Adversarial Attacks 

Targeted adversarial attack Untargeted adversarial attack 
32



• In general, adversarial attacks have to satisfy two constraints: Confidence 
and Similarity

• Confidence constraint ensures the input is classified incorrectly as the target 
class (targeted attacks) or not the original class (untargeted attacks). 
▪ For targeted attacks, the confidence of the target class is maximised

▪ For untargeted attacks, the confidence of the original class is minimised

• Similarity constraint ensures the input is imperceivable by constraining the 
perturbation to be less than some threshold.

Generating Adversarial Attacks 

33



Adversarial Attacks (AA) settings

AA 
settings

Whitebox Blackbox Greybox



• The adversarial attacks can be generated mainly under threat models: white-box, 
black-box and grey-box

• White-Box (WB) assumes the attacker have completely knowledge of the target 
model. 
▪ Therefore, the search for adversarial input is done via gradient descent

▪ Different white-box adversarial attacks place different emphasis on ensuring confidence and similarity. 

▪ In general, white-box attacks can be classified as Minimum Norm Attack, Maximum Allowable Attack, 
and Regularisation-based Attack

• Black-Box (BB) assumes the attacker have no knowledge of the target model. 
▪ The only output the attacker is able to obtain are the output decision or score. Moreover, the attacker 

can only have limited amount of queries to the target model.

▪ Typical black-box attacks include Transfer-based Attack, Score-based Attack, and Decision-based 
Attack

• Grey-Box (GB) assumes the attacker have some knowledge of the target model. 

Generating Adversarial Attacks (cont.) 

35
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Attack 
types

Poison Evasion
Backdoor

/Trojan
Stealing



• A ML/DL example:

Poison attacks

37

F1

F2

New decision boundary 
due to poison attacks

Original boundary

Poison 

samples



Poison attacks
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Labelled 

training 

data

Feature 

extraction

Training via 

ML 

algorithms

Training phase Testing phase

Trained 

model 

(classifier)

Testing 

data

malicious

benign

Poisoning

‘bad’ trained 

model 

(classifier)

• An adversarial sample is an input crafted to cause ML/DL algorithms to misclassify. 

Adversarial samples are created at test time, after the ML/DL algorithm has been 

trained by the defender, and do not require any alteration of the training process

• David Evans, Classifier under Attack, USENIX Enigma 2017 

• Papernot et al., The Limitations of Deep Learning in Adversarial Settings, Euro S&P 2016, https://arxiv.org/pdf/1511.07528.pdf

Why? DL is data hungry

https://arxiv.org/pdf/1511.07528.pdf
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Attack 
types

Poison Evasion
Backdoor

/Trojan
Stealing



Evasion attacks
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Labelled 

training 

data

Feature 

extraction

Training via 

ML 

algorithms

Training phase Testing phase

Trained 

model 

(classifier)

Testing 

data

malicious

benign

Evasion attacks –

evade trained 

model(s); e.g., evade 

a classifier

• Find samples which a trained model can 

misclassify. 

David Evans, USENIX Enigma 2017 — Classifiers under Attack



Evasion attacks

42

F1

F2

Original boundary
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A summary of DL-based NIDS architectures.
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A summary of DL-based NIDS architectures (continued)



• Adversarial attacks have been mostly studied in Computer Vision 
(CV). However, adversarial attacks can cause much more 
significant damage in security-sensitive domains such as 
Network Intrusion Detection System (NIDS)

• A successful adversarial attack can cause malicious packets 
bypass ML/DL based NIDS, which potentially violates the 
confidentiality, integrity, and availability of the network.

Adversarial Attacks in NIDS

45



• Adversarial attacks in NIDS have fundamental differences compared to CV

• Due to the large amounts of network packets being transmitted, the NIDS 
extracts numerous features from the packets and classifies the features. 
Therefore, simply altering the features does not create transmittable 
adversarial packets.

• Network features are highly correlate. Therefore, any perturbation to the 
features must convey the correlations. However, the exact correlation 
between the features are mostly unknown.

• Network features are also sequentially related. Hence, modification of a 
single packet can affect the features of the subsequent packets.

Adversarial Attacks in NIDS (cont.)

46



• Feature-Level Attacks (FLA)
▪ directly perturb the input network traffic features

▪ Although these studies show WB and BB attacks with feature-level perturbations are 
effective, they have a common limitation: lack of practicality. 

• Generative Feature-Level Attacks (GFLA)
▪ utilize generative algorithms such as Generative Adversarial Networks (GAN) to learn the 

inherent structure within network traffic features and enforce the features to look realistic. 

▪ capture the hidden interdependencies between network features and constrain the feature-
level perturbations to be more realistic. 

▪ However, despite realistic adversarial network features, there is still a significant gap in 
transforming the network features into replayable packets.

• Packet-Level Attacks (PLA)
▪ manipulate the network packets directly rather than network features.

▪ mark a significant improvement in practical adversarial attacks evading AI based NIDS, as 
they can generate replayable packets in the network. 

▪ However, existing adversarial attacks lack a comprehensive evaluation of the 
maliciousness of the adversarial examples.

Adversarial Attacks – types

47



• Goals (constraints)
▪ Bounded by 𝑙𝑝 ball, where the network features are freely perturbed with an 𝑙𝑝 ball. 
▪ Bounded by the generative model, where the network features are constrained by generative 

models such as GAN to be similar to realistic network features
▪ Bounded by the packet obfuscation, where packet-level perturbations are bounded by pre-

defined mutation operations. 

• Knowledge
▪ BB: if the attacker has zero knowledge of the classifier and its auxiliary components.
▪ GB: if the attacker has zero knowledge of the classifier but has some knowledge of the pre-

processing functions.
▪ WB: if the attacker has complete knowledge of the classifier and auxiliary components.

• Capability
▪ None, if the attacker cannot obtain the training dataset, or it is not necessary (e.g., the 

attacker has WB knowledge)
▪ Passive, if the attacker can capture both benign and malicious traffic.

• Target models
▪ ML, DL, …

Adversarial Attacks – Threat models

48



Type:

• Feature-Level Attacks (FLA)

• Generative Feature-Level 

Attacks (GFLA)

• Packet-Level Attacks (PLA)

Knowledge:

• Whitebox (WB)

• Greybox (GB)

• Blackbox (BB)

Capability:

• Passive

• None

49



• have been encouraged to increase the robustness of the model 
so that they can correctly classify the adversarial input/attack(s).

• are created by studying the formulation and characteristics of the 
adversarial examples and designed to exploit its weaknesses. 

• Common defenses include
▪ Gradient Masking - prevents the gradient of the model to be exposed by the attacker, 

even under white-box setting

▪ Adversarial Detection - adversarial examples possess unique characteristics that can 
be used to distinguish between adversarial and clean input

▪ Robustness Optimization - increase the robustness of the model directly so it is able 
to correctly classify the adversarial input/attacks

Defenses against Adversarial attacks

50
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• White-box adversarial attacks requires the gradient to 
be known in order to conduct gradient descent.

• Gradient masking aims to hide the gradient of the 
white-box model from the attacker, so that gradient 
descent cannot find a valid perturbation

• Gradient masking can be done via
▪ Shattered Gradients - the gradient is non-differentiable, 

numerically unstable, non-existent or incorrect.

▪ Stochastic Gradients - the gradient is randomised

▪ Vanishing & Exploding Gradients - the gradient vanishes to 0 
or explodes to infinity

• Gradient masking is limited against black-box attacks 
since black-box attacks does not require any gradient 
information

Gradient Masking

52



• aims to detect and reject the adversarial 
examples. 

• is often implemented in a plug-and-play manner 
and does not require any modification to the 
model

• Adversarial Detection methods include:
▪ Distributional-based - adversarial examples are artificially 

created and does not naturally occur in the input space. 
Therefore, it possess unique characteristics that are 
distinguishable from clean examples 

▪ Mutation-based - the similarity constraint makes the 
adversarial examples lie close to the decision boundary, 
mutating the decision boundary will cause the output of the 
adversarial example to be drastically different

Adversarial Detection

Distribution-based

Mutation-based

53



• aims to ensure the adversarial examples is correctly classified by the model

• Common methods include
▪ Input pre-processing - adversarial perturbations are small, therefore applying filters can remove 

the perturbations

▪ Adversarial training - train the model with correctly labelled adversarial examples so that it 
learns the adversarial example

▪ Post-training modifications - the model’s decision boundary is smoothed so that it can 
generalise better for data outside of the training dataset

Robustness Optimisation

Input Preprocessing Adversarial training
Post-training modification

54
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Liuer Mihou: A Practical Framework for Generating and 

Evaluating Grey-box Adversarial Attacks against NIDS

Ke He, Dongseong Kim, Jing Sun, Jeong Do Yoo, Young Hun Lee, Huy Kang Kim

CoRR abs/2204.06113 (2022) / currently in IEEE TDSC (under review)



Computer 

Networks

Network 

Packets

Capture

Features 

Extraction

AI model 

building

Answer for Q1
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Partial answer for Q2



• Deep learning have been used extensively in many domains

• Network Intrusion Detection Systems (NIDS) is not an exception

• Deep learning algorithms are known to be vulnerable to adversarial 
examples

• Unlike Computer Vision (CV), adversarial examples in NIDS can have a 
serious impact
▪ But most work on adversarial examples are done in CV, not many in NIDS

▪ Those that have been done in NIDS have done it rather poorly

• We would like to bridge this gap

Introduction
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Background - NIDS
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• Extracts aggregate features from the packets
▪ Statistics about packet sizes of a connection or in the last few seconds

▪ Inter arrival times of a connection

▪ Flags

• Due to the large volume of packets and the use of encryption, the features 
does not require examining the payload

• The extracted features are used by detection algorithm to be classified as 
benign or malicious

Background - NIDS

62Table source: Mirsky, Yisroel, et al. "Kitsune: an ensemble of autoencoders for online network intrusion detection." NDSS (2018).



• Previous works have mostly used adversarial attacks in CV and applied it 
directly to modify traffic features
▪ Does not achieve much, since the features cannot be used to do anything

• Some have modified packets
▪ A little bit more useful, but they often take random guesses and trial and error

▪ No evaluation of maliciousness of adversarial example

• We want to formalize adversarial attacks on NIDS and generate realistic 
adversarial examples (packets) that are malicious

Background - Adversarial Examples on NIDS

63



• We design a novel and practical adversarial attack tailored to attack 
anomaly-based NIDS called Liuer Mihou (LM) attack, and provide source 
code for download.
▪ https://github.com/XXXX-5/automatic-waddle 

• We conduct a comprehensive evaluation of LM attack in a real IoT testbed 
against five ML-based anomaly detection algorithms (SOM, RRCF, LOF, 
OCSVM, and FROCC), and the state-of-the-art DL based IoT NIDS, Kitsune.

• We demonstrate the strength of LM attack by assessing our attacks on 
Kitsune with adversarial detection defences (such as Feature Squeezing and 
Mag-Net).

• We show empirical results and findings of our experiments, which provide 
insights for future adversarial attacks against NIDS.

Contributions

64

https://github.com/XXXX-5/automatic-waddle


• Our goal
▪ Modify an existing, detectable sequence of malicious packets to evade detection

▪ Preserve the malicious behaviour of the packets to some extent

• Focus on IoT networks that is much simpler
▪ Small network size, devices do not have much computation power, and is relatively more periodic

• We know the NIDS uses outlier detection algorithm(s) to classify packets
▪ More realistic compared to traffic classification

• We know the features extracted
▪ Reasonable assumption, since there are only a certain number of features that can be extracted

• We can sniff the traffic in the network
▪ IoT networks are often connected wirelessly can sniffing packets is rather easy.

Threat Model

65



• a practical adversarial generation algorithm tailored specifically for NIDS that 
operates iteratively on each packet of the malicious traffic.

• For each packet, the surrogate NIDS first classifies the packet. 

• If the surrogate classifies the packet as malicious, it is likely to be classified 
as malicious by the target model. 

• For each malicious packet, LM first searches for an optimal set of mutation 
operations on the packet that minimizes the anomaly score produced by the 
surrogate NIDS. 

• Next, the optimal mutation operations are applied to the malicious packet, 
transforming it into adversarial packets containing the modified malicious 
packet and some redundant packets as byproducts. 

• Finally, the adversarial packets are written to the output file in place. 

Liuer Mihou (LM) attack framework - introduction
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Practical Evasion Attack Generation for NIDS

67

Train a surrogate detection algorithm given the 
features and benign traffic

Iteratively classify each malicious packet with 
the surrogate model

If it is classified as malicious, search for a set of 
mutation operations that minimises the anomaly 
score

Inject the adversarial packets in place and 
evaluate



• Train a surrogate detection algorithm given the features and benign traffic

• Iteratively classify each malicious packet with the surrogate model

• If it is classified as malicious, search for a set of mutation operations that minimises the anomaly 
score
▪ Delay the packet by some time

▪ Inject redundant packets in front of the malicious packet

• With the mutation operations, create a low-dimensional space where each dimension represents a 
mutation operation

• The search is done via heuristics search algorithms, in our case, a hybrid between PSO and DE
▪ Particle Swarm Optimization (PSO) and the Differential Evolution (DE) algorithms

• Inject the adversarial packets in place

Liuer Mihou attack framework 
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• A set of mutation operations are can be applied to a malicious packet to change the 
extracted features of the packet with minimal change of the content.
▪ Packet Delay: Delay the arrival time of a packet, which changes the inter-arrival time distribution. 
▪ Packet Injection: Inject redundant packets before a packet in the same connection, which changes 

packet-size distribution without affecting the original payload.

• The objective function formulated as the optimisation problem, done for each 
malicious packet (𝑝𝑖): 

▪ where M is the space of all possible mutations, 𝑚 is a specific mutation operation, 𝑝𝑖 is the 𝑖th malicious 
packet, 𝑝′ is the set of adversarial packets after mutation, g’ gives the anomaly score based on the input 
feature. 

• The adversarial packets contain the modified malicious packet and several 
redundant packets. 

• The aim is to reduce the maximum anomaly score of the adversarial packets so not 
to introduce more malicious packets. 

• In case there are still malicious packets above the surrogate threshold, we can 
recursively run LM on the output adversarial packets until it reduces all packets 
below the surrogate threshold.

Mutation Operation and Objective Function 

69



• To efficiently search for the mutation operations, representation of mutation 
operations into low-dimensional vectors is abstracted in the mutation space 
(Ψ, psi). 

• With the mutation operations, defined Ψ as a two-dimensional space with 
(𝑡𝑚, 𝑛𝑐 ): 
▪ Modified arrival time of the packet (𝑡𝑚), which represents packet delay. 

▪ Number of redundant packets inserted before the packet (𝑛𝑐), which represents packet injection.

▪ For example, (0.4, 4): delay the malicious packet by 0.4 seconds and place four redundant 
packets before the malicious packet. 

• For packet injection, the three methods of assigning arrival time and payload 
size of the redundant packets.
▪ Random Assignment (RA). Seeded Assignment (SA). Uniform Assignment (UA)

Packet Vectorisation
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• Three methods of assigning arrival time and payload size of the redundant 
packets.
▪ Random Assignment (RA). randomly assigns the arrival time and payload size of each redundant 

packet. We have found this method causes the cost function to be non-deterministic because the 
arrival time and payload size of the redundant packets at the same position are different in each 
iteration

▪ Seeded Assignment (SA). SA seeds the random number generator with the value of 𝑛𝑐 before 
generating the payload sizes for each redundant packet.

▪ Uniform Assignment (UA). A new dimension is introduced in the mutation space, 𝑠𝑐 , which 
governs the payload size of all redundant packets. As a result, the cost value is deterministic and 
piece-wise constant around each integer value of 𝑛c

• Selected UA for creating redundant packets, which suggest that uniform 
payload sizes are also characteristic of benign traffic in the dataset.

Injection methods
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• The typical approach to solve optimization problems involving non-
differentiable and non-invertible functions is to use meta-heuristic algorithms. 

• Meta-heuristic algorithms often have a master strategy that iteratively 
generates solutions, and the optimal solution is discovered by continuously 
evolving the solutions according to the fitness function.

• Liuer Mihou utilizes a hybrid heuristic search algorithm that combines PSO 
and DE to search for the optimal mutation, which we refer to as PSO-DE.

• The algorithm is designed to preserve the strengths of both the algorithms.

• The vanilla PSO is particularly prone to get stuck in local optima, Hence, DE 
is introduced to increase the exploration ability of the search algorithm.

Search Algorithms 
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IoT Testbed
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• Two datasets: benchmark Kitsune dataset and dataset captured from our 
own IoT testbed

• The benign data 
▪ consists of packets generated via commands such as turning off light bulbs, playing music on 

Google Home, etc, over 30 minutes. 

• The malicious data 
▪ consists of two main types of malicious attacks, probing and Denial of Service (DoS), all targeted 

at Google Home Mini. 

▪ Distributed attacks such as Mirai Botnet were excluded since it requires compromising other IoT 
devices, which is outside the scope of our threat model. 

▪ Probing attacks include Port Scan (PS) and OS Detection (OD), and we repeat PS twice and OD 
four times. DoS attacks include HTTP Flooding (HF) with LOIC at the highest intensity for 6 
minutes.

Datasets
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• Target/victim models
▪ Kitsune, a state-of-the-art NIDS for IoT network

▪ Self-Organising Maps (SOM) implemented with the python package MiniSOM.

▪ Robust Random Cut Forest (RRCF) implemented with the python package rrcf.

▪ Local Outlier Factor (LOF) implemented with sklearn.

▪ One-Class SVM (OCSVM) implemented with sklearn.

▪ Fast Random projection-based One-Class Classification (FROCC), the state-of-the-art One-Class 
classifier

• Surrogate model
▪ a vanilla autoencoder written in TensorFlow 2

▪ The encoder consists of three dense layers with 32, 8, and 2 neurons, respectively, and the 
Decoder consists of three dense layers with 8, 32, and 100 neurons. All layers use the ReLU 
activation function except for the last layer of Decoder, where it uses Sigmoid.

▪ The architecture of the surrogate model is arbitrarily chosen, and we intentionally did not conduct 
any hyperparameter search to find the optimal structure. 

▪ The surrogate model is trained on all benign packets with one epoch to mimic online detection. 

▪ The threshold of the surrogate model is determined as three standard deviations away from the 
mean of the anomaly scores on benign data.

Target DL/ML Algorithms and surrogate model
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• Performance Metrics
▪ True Negative Rate (TNR): measures the ratio of packets in benign traffic correctly identified as benign 

packets
▪ Malicious Detection Rate (MDR): measures the ratio of packets classified as malicious in the malicious 

traffic. 
• MDR is similar to True Positive Rate (TPR), but since we do not have ground truth labels, we use 

MDR instead

• Evasion Metrics
▪ Detection Rate (DR) and Evasion Rate (ER), with each metric measured for adversarial traffic (ADR 

and AER) and replayed traffic (RDR and RER). 
▪ DR measures the ratio of the adversarial/replayed packets that have been classified as malicious and 

gives an indication of the robustness of NIDS under adversarial/replayed traffic (higher is better for 
defender).

▪ ER measures the percentage of the adversarial/replayed packets that evade detection compared to the 
original attack, indicating the effectiveness of the adversarial attack (higher is better for attacker).

• Semantic Metrics
▪ Semantic metrics compare the severity of the adversarial traffic on the target system to the original, 

unmodified attack
▪ For DoS attacks, we measure the Round-Trip Time (RTT) and calculate the Relative Round-trip Delay 

(RRD) of the device under flooding attacks compared to the normal environments. 
▪ For Probing attacks, we compare Ports Scanned (PS), the Relative Ports Scanned (RPS) and Relative 

Time Delay (RTD) between the adversarial and unmodified attacks.

Metrics
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• Anomaly score of three types of 
traffic
▪ Original: original detectable attack

▪ Adversarial: theoretically generated 
adversarial packets

▪ Replayed: replay of adversaria packet

• Adversarial packets are evasive

• Replayed is not
▪ Due to inherent propagation delays, the 

arrival time will not be exact

Experimental Results
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Attacks

• Port Scan (PS) 

• OS Detection (OD)

• HTTP Flooding (HF) 



• Replayed traffic is less evasive 
compared to adversarial traffic, 
indicated by RER being higher 
than AER for all attacks.
▪ Adversarial traffic Evasion Rate (AER)

▪ Replayed traffic Evasion Rate (RER)

• Kitsune and FROCC are highly 
vulnerable to LM, but other 
anomaly detectors are not.
▪ Adversarial traffic Detection Rate (ADR) 

of LM with Kitsune and FROCC is 0 for 
all three attacks, while other detection 
algorithms have ADR higher than 0.

Experimental Results - Evasiveness of Adversarial Traffic
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• HTTP Flooding (HF) attacks (Table 4)
▪ The goal is to make the Google Home device 

unresponsive, so we measure the average round trip 
time using ping 

▪ The delay in RTT caused by the replayed HTTP 
flooding attack is only a small proportion of the 
unmodified HTTP flooding, but it is still larger than 
normal

▪ the increase of RTT of the adversarial traffic generated 
with LM was barely noticeable.

• OS Detection (OD) attacks (Table 5)
▪ can fully scan all the ports scanned by the unmodified 

attack with less than a ten percent increase in Relative 
Time Delay (RTD) for LM. 

• Port Scan (PS) attacks  (Table 5)
▪ can scan over 90% of the original ports but takes ten 

times more time than the original Port Scan attack.

Experimental Results - Maliciousness of Adversary 
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• Introduce two adversarial detectors as 
defence
▪ Feature Squeezing (FS)

▪ Mag-Net

• The detectors first detect if the input is 
adversarial or clean, then the NIDS detects 
the input as benign or malicious.

• FS cannot detect the adversarial examples

• Mag-Net detects the adversarial examples, 
but the reforming stage makes the 
malicious examples evade detection

Against Adversarial Defence
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• Data issues
▪ No standard AE benchmark dataset for NIDS
▪ Structured Data - cannot freely modify the features
▪ Sequentially Related - the same packet will produce different features depending on previous packets
▪ published dataset is i) not general and has to be anonymised, ii) often have truncated payload

• Transferability: Evasiveness and Maliciousness trade-off
▪ Liuer Mihou is a transfer-based attack that leverages adversarial transferability across ML/DL 

algorithms.
▪ Since knowing the actual detection model is infeasible in practice, the similarity of the decision 

boundary cannot be increased. Therefore, to increase evasiveness, the attacker have to rely on 
lowering the threshold value of the surrogate model.

▪ lowering the surrogate threshold will inevitably lower the maliciousness of the adversarial traffic.

• Weakness of Adversarial Defence
▪ We used two plug-and-play adversarial defence methods: Feature Squeezing and Mag-Net. These 

defences were designed initially for classification algorithms, and the results from our experiment have 
shown that both methods are unsuitable in the NIDS domain.

▪ First, packet-level attacks make large changes in the input feature and have realistic distribution as 
benign traffic, and adversarial detectors that intentionally ignore small perturbations, such as Feature 
Squeezing, fail to detect the adversarial examples. 

▪ Second, only benign traffic is available to train the adversarial detectors under a realistic NIDS threat 
model. Therefore, the adversarial detector cannot distinguish between adversarial and malicious traffic, 
classifying all attacks as adversarial.

Some challenges
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• About UQ/me

• IDS overview

• IDS2 project overview

• AML for NIDS: a survey

• Practical Evasion Attacks for NIDS

• On-going work

• Q&A

Outline
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• UQ IoT testbed and data collection
▪ Initial data is available
▪ Additional datasets will be collected

• Attacks
▪ Practical and Replayable Evasion Attacks for Deployed ML/DL based IDS 

in UQ IoT network.
▪ AML based evasion attacks for Autonomous vehicle networks (CANBus)

• Defences
▪ MTD based adversarial defences
▪ Explainability (e.g., Feature to class /Decision boundary visualization)

On-going research
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UQ IoT Testbed Setup
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• Pool PC (Kali Linux) – Attacker:

o Generate cyber-attacks

• Raspberry Pi:

o Network Bridge and Wi-Fi AP

o Data Collection

• IoT devices:

o Generate benign samples

o Attack targets

Wi-Fi connection

Ethernet connection Generating high-

speed flooding 

attacks



List of IoT devices
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No. Device Name No. Device Name

1 Smartphone 1 2 Smartphone 2

3 Smart Bulb 1 4 Smart Bulb 2

5 Smart Clock 1 6 Smart Clock 2

7 IP Camera 1 8 IP Camera 2

9 Google Nest Mini 1 10 Google Nest Mini 2

11 Smart Plug 1 12 Smart Plug 2

13 Smart TV 14 Telnet Raspberry Pi

15 Bridge Raspberry Pi 16 Pool PC

17 Router 18 Laptop



Benign Samples
• Streaming videos and music

• Checking social media

• Adjusting brightness and colours of 
bulbs

• etc.

❑7 days of data mimicking daily activities 
of devices for a whole week

▪ 5 weekdays

▪ 1 Saturday

▪ 1 Sunday 

Generate Network Packets 
from:

• IoT devices – Benign 
Samples

• Attacker – Attack Samples

Data collection
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Attack Samples
• 9 types of cyber-attacks:

❑Collected separately for each device 
under each attack type (convenient for 
labelling)

Generate Network Packets 
from:

• IoT devices – Benign 
Samples

• Attacker – Attack Samples

Data collection
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Host Discovery Port Scanning Service Detection

ARP Spoofing Telnet Brute-force SYN Flooding

ACK Flooding HTTP Flooding UDP Flooding



• Features: 107
No., Date_Time, Src_Port, Dest_Port, Protocol, Length, Label, 100 extracted features

• Size: 70.8GB

Dataset Summary
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Label Number of Packets Percentage

Normal 22480614 54.294%

UDP Flooding 8392711 20.270%

ACK Flooding 6141155 14.832%

SYN Flooding 3923876 9.477%

HTTP Flooding 402252 0.972%

Service Detection 38908 0.094%

Port Scanning 16519 0.040%

Host Discovery 6120 0.015%

Telnet Brute-force 2167 0.005%

ARP Spoofing 661 0.002%

Total 41404983 -

He, Ke, Kim, Dan, Zhang, Zhien, Ge, Mengmeng, Lam, Ulysses, and Yu, Jiaqi(2022). UQ IoT IDS dataset 
2021. The University of Queensland. Data Collection.https://doi.org/10.48610/17b44bb

https://doi.org/10.48610/17b44bb


• Comparison with Kitsune

• Supervised Learning Models: lower False Positive Rates, higher Accuracy

• Kitsune: much faster than Neural Networks

Building ML/DL models for NIDS
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CNN RNN RF Kitsune

Accuracy 99.62% 99.65% 99.98% 94.99%

Training Time 50 min 700 min 1 min 2 min

False Positive Rate 0.28% 0.19% 0.02% 0.47%



• UQ IoT testbed and data collection
▪ Initial data is available
▪ Additional datasets will be collected

• Attacks
▪ Practical and Replayable Evasion Attacks for Deployed ML/DL based IDS 

in UQ IoT network.
▪ AML based evasion attacks for Autonomous vehicle networks (CANBus)

• Defences
▪ MTD based adversarial defences
▪ Explainability (e.g., Feature to class /Decision boundary visualization)

On-going research
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• LM+: Practical, Replayable and Real-time Evasion Attacks for Deployed 
ML/DL based IDS in UQ IoT network.
▪ Evasiveness 

▪ Maliciousness (Attack impact)

On-going work
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• Pool PC (Kali Linux) – Attacker:

o Generate cyber-attacks

• IoT devices:

o Generate benign samples

o Attack targets



CAN-BUS Shield V2

+

Arduino Uno

CAN-BUS Shield V2

+

Arduino Uno

ECU1 (Master) ECU2 (Attacker)CAN_H

CAN_H

CAN_LCAN_L

Wiring and adding 

registers are required

USB CAN analyserRegisters

UQ In-Vehicle Testbed
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• UQ IoT testbed and data collection
▪ Initial data is available
▪ Additional datasets will be collected

• Attacks
▪ Practical and Replayable Evasion Attacks for Deployed ML/DL based IDS 

in UQ IoT network.
▪ AML based evasion attacks for Autonomous vehicle networks (CANBus)

• Defences
▪ MTD based adversarial defences
▪ Explainability (e.g., Feature to class /Decision boundary visualization)

On-going research
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• What to move
▪ We are operating in a rather limited 

space 

▪ Consider changing the detection 
algorithm and/or feature extractor

• How to move
▪ Redundancy is not really applicable in 

the context of adversarial defence

▪ Focus on shuffling and diversity

• When to move
▪ Either change the model on a per 

query basis or per time interval

▪ Moving a target does not incur much 
cost, thus we can move frequently

MTD based adversarial defenses
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● Previous studies in MTD inspired adversarial 

defence have broken down “how to move” 

into three stages

○ Model diversification - generate diverse 

range of models

○ Model selection - select all or partial 

models to be used in classification

○ Model detection - how to use the selected 

models to classify the input 



• Trains a pool of models with
▪ Feature mapper mutation - randomly alter kitsunes feature mapper

▪ Model mutation - use different anomaly detectors

▪ Parameters mutation - perturb weights and biases of a trained kitsune model

▪ Training data mutation - use a subset of data to train each model, can be done in conjunction with 
other mutation techniques

• Evaluate each model on benign data to calculate threshold, and 
remove models that have lower TNR than the original model
▪ Note this will not filter out models that classify everything as benign (e.g. IF and some 

OCSVM models)

• During evaluation, a random model is picked to process every 
1000 packets

Process of MTD – on-going work



• Lipton (2018) and Rudin (2019) provides similar definitions:

• Interpretability provides transparency and answers “How does the 
model work?”
▪ Intrinsically explainable models can be considered transparent. However, it requires the 

features to be meaningful

• Explainability answers “What else can the model tell me?”
▪ Post hoc explanations with textual or visual explanations

Explainability vs. interpretability

Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-215. 96



• Simple models where the decision 
function is directly explainable
▪ e.g. decision tree, linear regression

• The features have to be informative

Existing Explainability Methods
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• Complex models where the decision function 
is high dimensional

• Simplify local area of the model with linear 
function that are explainable.
• e.g., SHAP, LIME, DeepLIFT

• Visualise features with dimensionality 
reduction

Intrinsically explainable models Post hoc explanation methods



• Which features contribute most towards classifying a malicious packet as 
abnormal?

• Which features contributes most towards the sequence of packets?

• How can we visualise the decision boundary of the NIDS? 

Explainability – some questions to answer
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• About UQ/me

• IDS overview

• IDS2 project overview

• AML for NIDS: a survey

• Practical Evasion Attacks for NIDS

• On-going work

• Q&A

Outline
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Thank you! Q&A
Adversarial Machine Learning in Network Intrusion Detection System

Associate Professor Dan Kim

Deputy Director of UQ Cyber

dan.kim@uq.edu.au



• AI (ML/DL) can be used to detect network intrusion.

• Evasion attacks can be generated at network packet 
level.

• More practical attacks need to be developed.

• Defence against Adversarial attacks has to be developed 
more.

Take aways
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MTD vs Ensemble

Characteristic Ensemble MTD

Philosophy Combine prediction of  multiple 

models (often weak) to become 

more robust

Constantly switch between (strong) 

models to make the model harder 

to attack

Goal Create diverse set of models Create diverse set of models

Output Average / majority vote The chosen model’s output

Difficulty for attacker Fool more than half of the 

ensemble

Fool all of the models
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