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I. Abstract 

High speed serial data transmissions can suffer loss of margin as well as data errors due to 

baseline wander caused by mechanisms such as AC coupling. Thorough simulation and 

measurement are difficult since they involve interaction between physical layer fidelity 

features from sub-MHz to tens of GHz of signal spectra, and must include effects 

accumulated over millions of UIs. 

We show a method of rapid analysis of baseline wander that quickly spans the large 

frequency range required, and consider its implementation in both bit-by-bit and statistical 

analysis. We demonstrate this method on extreme cases of signals in PAM4 signaling, and 

show measurement and simulation correlation.  
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III. Introduction. What is Baseline Wander? 

 
“Baseline wander is actually the effect where the base axis (X-axis) of any signal viewed on a 

screen appears to 'wander' or move up and down rather than be straight. … I believe it is due 

to improper electrodes (like rusted, or broken)” 

www.crazyengineers.com 

 

“...A long string 0s or 1s can cause a drift in the baseline (baseline wandering) and make it 

difficult for the receiver to decode correctly” 

https://www.coursehero.com 

 

What is baseline wander (BLW)? Is this something caused by the lack of low frequency gain? 

Is it caused by having imbalance in symbols in the transmitted pattern? In fact, both 

conditions are necessary to cause BLW. It happens when channel has low frequency 

bandwidth limitations that block or significantly reduce part of the signal spectrum. The 

missing portion of the signal creates an error that manifests itself as a slow drift of the 

signal’s median level. For example, PCIe channels include series decoupling capacitors. An 

unconstrained data stream travelling through such a channel would cause BLW, as an 

unconstrained signal can have a considerable amount of slowly changing data symbol 

imparity. To avoid BLW, the first generations of PCIe used data encoding protocols (8b10b) 

ensuring the signal pattern is DC-balanced. However, later generations employ less restrictive 

encoding to reduce encoding overhead and improve data transmission efficiency. They use 

scrambling that helps to distribute the energy of the signal evenly along frequency spectrum, 

thus reducing occasional low frequency spikes that occur in a raw un-encoded data stream. 

However, scrambling doesn’t eliminate the low frequency portion of the signal spectrum 

completely, and hence – BLW remains a problem. 

There are few works devoted to BLW in particular. However, the underlying phenomena 

were addressed over time in many sources on digital transmission, such as [1-3]. We can find 

there two major ways of mitigating BLW. One is using DC-balanced signal encoding 

protocols that prevent accumulation of signal disparity. The other is BLW correction through 

digital quantized feedback [4, 6]. Here, the missing BLW portion is “synthesized” on the 

receiver end by applying the restored digital signal to a low pass filter, and adding filtered 

waveform to the input of the receiver.  

Both techniques have their limitations. DC-balanced protocols bear less net information per 

symbol than unconstrained patterns, and ever growing demand for speed forces the designers 

to trade BLW for efficiency. BLW correction is not widely used in modern high-speed 

communication. It is costly, and it’s difficult to construct low pass filter that accurately 

approximates missing portion of the channel’s transfer function. 

Therefore, BLW noise remains an important factor that should be considered on the SERDES 

design and verification stage. Growing popularity of multilevel signaling (especially PAM-4) 

makes BLW impairment even more critical because of reduced separation between signal 

levels. Hence, we need accurate and efficient methods of BLW simulation and measurement. 

 

BLW and current simulation tools 

Unfortunately, BLW is not adequately addressed in existing analysis tools. Consider 

traditional bit-by-bit simulation of SERDES links, StatEye-type simulators, or IBIS AMI 

analysis, both time domain and statistical. Which of them consider impairments caused by 

http://www.crazyengineers.com/
https://www.coursehero.com/
https://www.coursehero.com/


 

 

BLW? Most of the fast eye-diagram/BER evaluation methods are based on convolving a long 

digital stimulus with a relatively short channel’s elementary response (impulse or step). For 

efficiency, they use overlap-save version of IFFT, but cannot afford a very long channel 

response (up to 1M symbols) that includes accurate near-DC bandwidth limitations. Even 

generating such response for statistical analysis is problematic. Similarly, new channel 

compliance evaluation methods, such as COM, ERL and others don’t have provisions to 

consider effect of BLW. These approaches require that channel S-parameters be measured 

starting from 40-50MHz with a step of about 10MHz. With such sampling, the low frequency 

portion of the transfer function is completely ignored. The IFFT methods these tools employ 

require uniform sampling, and the computational cost of using ~10KHz steps going up to 

~50GHz is prohibitive. 

We can name only a few works evaluating BLW. In [5] the authors describe an approximate 

evaluation of BLW distribution, an important step in BLW analysis; [6] studies the effects of 

BLW on signal integrity for PCIe Gen 3 protocols, [7-8] investigate the effect of BLW on bit 

error ratio, and finds a short periodic test pattern that approximates its distribution. 

 

Overall, there is no practically feasible systematic approach that can be used for BLW 

simulation and measurement. In this work, we propose a fast method of bit-by-bit simulation 

and a statistical BLW analysis. The latter assumes that the input pattern is either random and 

uncorrelated, correlated with known correlation function or spectral density, or is a 

deterministic periodic pattern. The method is majorly based on the idea of rational function 

approximation of the BLW transfer function, making it possible to avoid IFFT and use 

recursive convolution as a solution vehicle. Although is somewhat less convenient, it can also 

be used in a more traditional way, based on step/pulse responses. In either case, we need two 

convolution solvers, one for low-frequency BLW and the other for high-frequency ISI 

effects. 

 

    

IV. Looking Deeper into BLW. Is it a Part of ISI or 

Something Else? 

 

Despite the fact that phenomenon of baseline wander (BLW) has been known for years [2-7], 

it somehow remains a mystery, not sufficiently covered in literature or addressed in analysis 

tools. And yet, BLW is a serious factor: it produces slowly progressing low frequency noise 

that can reach several mV by magnitude, sometimes comparable or exceeding crosstalk. It 

affects bit error ratio, and is especially harmful for multilevel signaling protocols with smaller 

level separation.  

We know that BLW appears in SERDES links which do not have a conductive connection 

between the signal transmitter and receiver, for example those using series DC-blocking 

capacitors or transformers. We also know that BLW is a relatively slow process that depends 

on both the channel’s transfer function at low frequency, and the spectrum of the digital 

stimulus applied to the channel over considerable number of symbol intervals. In that respect, 

BLW is closely related to inter-symbol interference (ISI), as both are manifestations of the 

channel’s bandwidth limitations. If so, why can’t we consider BLW together with inter-

symbol interference (ISI) and use similar techniques for their simulation and measurement? 

What is the difference between BLW and ISI? 



 

 

To answer these questions, let’s consider channels with bandwidth limitations at low 

frequency, high frequency, and both bandwidth boundaries. We understand that BLW is 

caused by low-frequency bandwidth deficiency (LFD), while ISI results typically from high-

frequency bandwidth deficiency (HFD) or reflections. Figure 1 illustrates 3 cases: LFD, 

HFD, and both of them.  

 

 

Figure 1. Channel transfer function (top row), missing bandwidth (middle), and error transfer function (bottom 

row). Left column corresponds to low-frequency deficiency, middle column – high-frequency bandwidth 

deficiency causing ISI, and right column has them both 

 

Figure 1 illustrates channel transfer function with low- and high frequency limitations (top 

row). Middle row shows a missing portion of it, and bottom – an error transfer function. It is 

important to recognize the scale on frequency axis (which is far from being linear), and 

important frequencies and associated time constants. Let bF be signal rate, and 1/ bT F - 

symbol interval. In Figure 1(a, H) there is a band between frequencies 1HF and 2HF - marked 

blue - where most of the ISI effects reside. Typically, the length of the channel response 

needed for ISI estimation varies from a few hundred to a thousand of unit intervals, hence

1/ 100 1000B HF F . Since we should allow several samples per UI, the waveform 

sampling rate, determined by 2HF , should be higher by an order or two: 2 / 10 100H BF F . 

Low frequency bandwidth limitations span the range from 1LF to 2LF , Figure 1(a, L). This is a 

potential bandwidth of BLW error. Since 2LF defines the upper LFD limit, it is related to the 

time step that is small enough to capture all details of BLW noise. Typically, in channels with 

DC blocking capacitors 2LF doesn’t exceed a few MHz, which is well below the signal rate

2L bF F . The lowest frequency of interest is 1LF ; this is where the channel’s transfer 

function barely takes off. This frequency is in inverse proportion to LFD error response 

duration, or the time needed for BLW effect from a particular symbol to disappear. If we 



 

 

assume exponential shape of LFD response, represented with ~1% accuracy, it would take 

about 400 uniform samples. However, it could be much larger with a more complicated 

frequency response, e.g. having low frequency resonances. Roughly, we can assume that

2 1/ 100 1000L LF F . 

As we see from above, low-frequency LFD-related noise has its own time scale, non-

commensurable with simulation step and duration that we use for ISI. Sample interval for 

BLW noise doesn’t have to be as small as for ISI. Depending on the ratio 2/ 1b LF F , even a 

symbol interval could be an unnecessarily fine granulation. If we have to simulate ISI 

together with BLW, it would take around a billion solution steps only to pass clear of a single 

BLW response duration. Therefore, it makes sense to separate computations of ISI and BLW 

and use individual time steps for both. 

Figure 2 illustrates pulse responses of the channels with LFD and HFD separately, and 

combined. Its structure is similar to Figure 1. For convenience of drawing, the time constants 

related to ISI and BLW are made much closer to each other. A channel that doesn’t modify 

the DC component of the input signal preserves the integral of the input pulse, which is 0H T , 

see Figure 2, (a, H). The error, found as a difference between this pulse response and the 

ideal pulse is shown in Figure 2, (c, H). Integral over the error response is zero. Although ISI 

could be considerable, its accumulation doesn’t create a slowly changing bias component. 

On the contrary, for the channels with a non-transparent DC component (cases L and LH) the 

integral of the pulse response is zero, but not the integral on the error. The responses in the 

right column may look similar to those in the middle, but notice a small negative tail of the 

pulse response that stays long enough to zero-out the average. Respectively, the error 

component has a negative tail making the integral equal 0H T . Remarkably, this value 

doesn’t depend on the low-frequency time constant, or exact shape of the channel response.  

  

Figure 2. Pulse responses, characterizing the channels with LFD, HDF, and LDF & HFD. The structure is 

similar to Figure 1 



 

 

 

What happens if we increase the value of the DC-blocking capacitor? The time constant of 

the error component, as in Figure 3 (c, L) will increase. Its peak value gets smaller, however 

its tail gets longer, as needed to preserve the value of the integral. As a result, BLW will be 

accumulated from increasingly many symbols, its behavior becomes less predictable and less 

correlated with the input pattern, at least within a time window we typically consider for ISI 

analysis. Even though the energy of the error coming from a single pulse remains constant, 

with more symbols involved, it’s less probable that their magnitudes will be “biased” in 

concert, therefore the standard deviation of BLW decreases approximately as

0
2

BLW x

LF

T
H 


 . Here, we assumed that input pattern is random uncorrelated, symbol 

amplitude has zero average and standard deviation x ;T is symbol interval, 0H - error transfer 

factor at DC, see Figure 1(b, L), and LF is a large time constant associated with error transfer 

function with response close to exponential. 

A brief conclusion for this part: 

1) Unlike ISI, BLW response is characterized by an error with a non-zero average. This 

explains its accumulation over time if the input pattern is not DC-balanced. 

2) The duration of a BLW response is orders of magnitude longer than that for ISI 

effects, which makes it reasonable to compute them independently. 

3) The, sampling interval needed to represent slowly changing BLW exceeds the symbol 

interval if 2L bF F . In this case it seems reasonable to aggregate several consecutive 

symbols together and use the “average” magnitude as an input to BLW filter. 

 

V. Separating BLW transfer function from the full 

channel characteristic 

 

In order to efficiently simulate BLW, we should separate its transfer function from the rest of 

the channel response. A proper way is to include the effect of linear equalization (FFE, 

CTLE) as well, but we won’t consider it now because it doesn’t modify the procedure 

described in this section.  

One simple approach is first to find the characteristic by taking the samples on a coarse linear 

grid, as needed for accurate ISI representation. For example, if the channel characteristic 

from Figure 1 (a, LH) is sampled linearly with 10MHz spacing, starting from 50MHz, the 

low-frequency (BLW) portion will be completely ignored. Then, we can resample low 

frequency portion of the extracted response using a variety of interpolation methods (by 

Fourier transform, spline interpolation, rational fitting, etc.). This will give us characteristic 

behavior similar to Figure 1 (a, H). Then, we can find the characteristic of the same channel 

with much finer granulation going from DC up to 50MHz, or whatever frequency is needed 

to cover the effect from the blocking capacitor. The difference between the first characteristic 

(its LF portion) and the second gives us “BLW error transfer function”, similar to the one 

shown in Figure 1 (b, L).  

 



 

 

VI. Representing BLW transfer function by IIR filter 

Since the BLW response duration may reach millions of UIs, time domain simulation 

methods using direct convolution (or its modifications, like overlap-save method) appear 

impractical. This group of methods belongs to finite-impulse-response filters (FIR). Instead, 

we’ll use an infinite impulse response filter (IIR) by finding a rational approximation of the 

BLW transfer function [10, 11]. This approach is sufficiently accurate (max error below 

0.1%), ensures causality, and allows fast recursive convolution, making it superior to direct 

convolution.  

An arbitrary BLW transfer function can be represented as sum of elementary frequency 

components: 
*

*
1

1
( )

2 1 / 1 /

M
m m

m m m

A A
H s H

s s




 
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    
 .    (1) 

Here, M is the number of poles; mA and m are real or complex factors and poles, with

Re{ } 0m  . Then, for a given series of piece-wise constant (PWC) input - a sequence of 

digital symbols of magnitudes nx - the output BLW becomes: 

)( nty = nH x +Re
,

1

M

m n

m

z


 ,     (2) 

,m nz = , 1
m nh

m ne z


 + 1[1 ]m nh

m nA e x


 .    (3) 

Formulas (2, 3) give accurate solution in case of PWC input when the time points are taken at 

its nodes. These are modifications of PWL formulas such as those from [12]. Two 

simplifications are possible for BLW noise. First, its transfer function disappears at high 

frequency thus making 0H  . Second, PWC node points are evenly spaced, therefore we 

can set it to symbol interval nh T . Then (2, 3) become: 

ny =
,

1

Re{ }
M

m m n

m

K z


       (4) 

,m nz = , 1m m nE z  + 1nx  ,      (5) 

with constant complex factors (1 )mT

m mK A e


   and mT

mE e


 . Complex mz are internal 

state variables; they should be updated once per solution point. 

Expressions (4, 5) evaluate the output BLW error once per UI at the pinnacle of the pulse 

response and can be used as an efficient vehicle for time-domain BLW computations. We’ll 

also use them to derive analytical form of the BLW noise pulse response - as in Figure 2 (c, 

L) - for statistical analysis. 

 

 

VII. Representing BLW transfer function by FIR filter 

(direct convolution) 

 

Once the channel response and BLW noise are separated in frequency, direct convolution 

methods employing FIR filtering become possible, too. For example, we can use step or pulse 

response representing BLW filter with much coarser time granulation compared to the signal 

response. With two separate responses, and two convolution engines (for BLW and ISI 

components) computations can be organized in a more efficient way. 



 

 

In fact, there is a simple relation between IIR equations (4, 5) and BLW time response. The 

“cursors” of the BLW response on a single pulse, taken by symbol intervals, make a series

1

1

Re{ }
M

n

n m m

m

P K E 



 , 1...n N . Of course, with direct convolution, the length of this series 

is always limited. 

In this paper, we prefer using IIR filter described in the previous section. If necessary, it 

allows us to combine BLW and ISI effects together in a single filter. It also provides a 

convenient formal representation of responses, which we’ll use in the following sections. 

 

VIII. Time domain analysis of BLW 

 

Here we apply the techniques outlined in Section V and VI to the analysis of a FPGA design 

with 4uF series capacitors, operating at 5 Gbps. The wideband transfer function (TF) has 

been extracted from the design using a combination of logarithmic and linear spacing, 

spanning the range from 10Hz to 50 GHz. The BLW noise TF (Figure 3, blue curve) was 

found as a difference between the one with LF portion extrapolated down to DC (red curve), 

and the full broadband TF (green). 

 

(a)                                                                     (b) 

Figure 3. (a) Broadband transfer function, its version using flat continuation for the missing LF portion, and 

BLW noise transfer function, the difference between the two; (b) sampled transfer function of BLW and its fit 

 

 

We used a non-periodic random unconstrained NRZ pattern with 5 Gbps. The BLW transfer 

function drops by 60dB at frequency that is about 3 orders of magnitude below the bit rate. 

The time constant of the BLW components is two more orders of magnitude below that, 

where the green and blue curves cross. Our expectation therefore is that BLW accumulates 

the effect from approximately 100K symbols, but is only sensitive to symbol imparity 

averaged over about 1,000 symbols and not to its faster variations. 

The fitted version of the BLW function is represented by 7 real and complex poles. Poles and 

residues were used to construct an IIR filter, as defined by equations (4, 5). We performed a 

series of simulations updating state variables per equal time intervals. First, once per symbol, 

with nx in (5) being actual symbol values (1, 1) . Then, the state variables were updated every

p symbols, with p = 10, 100…100K. For each group of p consecutive symbols we 

determined the average and used it as an “aggregated symbol” when updating state variables 

in (5). 



 

 

 

 

 
Figure 4. (a) BLW computed over 10M bits with different granularity; (b) same waveforms, zoomed; (c) BLW 

computed over 10B symbols with updates every 1K symbols; (d) BLW noise histogram build from 10B UI 

waveform 

 

As we see from Figure 4 (a, b), only extremely rare updates, once per 10K (marked green 

star) or 100K symbols (marked with triangles), differ from those found with finer 

granulation. This result agrees with our observations of frequency responses from Figure 3. 

We found that updating state variables once per 1K symbols provides high simulation 

accuracy of BLW, and is much faster than updating every symbol. Therefore, the next 

experiment comprises of computing BLW over 10B symbols with 1K symbol updates, going 

over 2 seconds of the “model time”. The resulted noise waveform and the histogram built 

from it are shown in Figure 4, (c) and (d). 

This approach is indeed very fast. On a Dell M4800 it takes about 1 sec of CPU time per 

100M symbols. In this example, that’s only about 70 times slower than real-life hardware 

operation. 

It’s tempting to say that this fast time domain simulation of BLW provides a way to build 

distribution down to low probability levels. Let’s imagine that we have a fast solver that can 

simulate up to
1210 symbols in this manner, together with BLW noise. After we build the eye, 

can we say that BLW noise distribution was accounted down to 
1210

probability level? 

Unfortunately, the answer is “no”. As we mentioned before, BLW and ISI effects have quite 

different bandwidth limits. When we estimate histogram of a random process, only 

uncorrelated data samples are statistically meaningful. Since correlation interval of BLW 

process is about ~ /LF T of UIs, we need to increase the time of BLW estimation in the same 

proportion. In our test example this ratio is 6 order of magnitudes! Whatever the time domain 

simulation speed is, we cannot hope to cover 
1810 symbols. 

That’s why statistical analysis of BLW is extremely important. 



 

 

 

IX. Statistical analysis of BLW 

Let’s unwrap recursive convolution formulas (4, 5) and explicitly express the output BLW 

samples through symbol values. By applying (5) repeatedly for N consecutive symbols, we get 

the value of the m-th state variable: 

1 2

, 1 2 1...N N

m N m m m N Nz E x E x E x x 

     .     (6) 

Therefore, the output becomes
1 1
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y K E x

 

   . By changing the order of 

summation, we can write it as
1

N
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y P x
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 , where
1
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M

N n

n m m

m

P K E 



 . For the purpose of 

statistical analysis, we can assume that the property of the input pattern doesn’t change with 

time inversion: it can be played backward and reveal the same statistical properties. If so, 

symbol values kx can be replaced by 1N kx   and the output values represented as: 

1

N

N n n

n

y P x


 , where 1

1

Re{ }
M

n

n m m

m

P K E 



 .    (7) 

 

Random uncorrelated input pattern, even centered distribution 

Let’s assume that input symbols have L-level modulation (PAM-L), with all states equally 

probable, meaning they average to zero and are uncorrelated. Due to the considerable 

difference between the signal rate and BLW processes, the low-pass filter will efficiently 

average the effect from individual symbol over hundreds or thousands of bits, thus making 

the distribution of BLW noise close to Gaussian.  

We’ll estimate standard deviation of the output samples described by (7). A square of 

standard deviation of Ny is 2 2( )y Ny y    . We assume that the mean value of a symbol 

magnitude is zero, thus making the mean value of the output zero, too. Therefore, we need to 

find an average of the product of the two sums: 

2

1 1

N N

y n n q q

n q

P x P x
 

  
   

  
  .     (8) 

Note that since nx are statistically independent, the average of the product n qx x is zero for all

n q . Therefore, (8) reduces to a sum of components with squared factors only: 

2 2 2 2 2

1 1

N N

y n n x n

n n

P x P 
 

   .      (9) 

Dispersion of the input symbols is defined by their largest magnitude sA and the number of 

signal levels as 

2 2 1

3( 1)
x s

L
A

L






.      (10) 

Hence the only remaining task is to find the sum in (9). 

The summands in (9) don’t form a geometrical progression, as we’d have for an exponential 

component; they may have components oscillating with different frequencies and attenuating 



 

 

with different rate. Therefore, the sum (9) doesn’t converge monotonically with N. However, 

since we know the slowest pole in approximation (1), we can easily estimate the number of 

summands that guarantees convergence with predefined accuracy. Let min min Re{ }m   . 

For a given error 1  , we can estimate the number of summand from minN Te    . In our 

case min 2 *3.128 3e  therefore for
1010  we should consider about 5.8M summands. 

Figure 5 below, illustrates convergence of the sum while considering 10M summands. While 

the number seems large, the computations are simple and take about a second. As we see, the 

summands in (9) (red curve) start to decrease monotonically only for N>100K, after the faster 

poles disappear. Their increments (green) are much smaller but follow the trend. The estimate 

of sigma – a square root of the current sum (shown black) doesn’t visibly change after

5 5N e . However 15 digits of sigma estimate settle after about 3.2N M symbols.   

 

 

Figure 5 (a) convergence of the sum and BLW standard deviation; (b) comparison of BLW histogram found by 

10B time-domain analysis and PDF predicted by statistical method 

 

The resulting sigma is 1.228 mV, considering that for unit-magnitude NRZ
2 1x  . Found 

statistical distribution perfectly matches the histogram from 10B-symbol BLW simulation. 

 

Correlated input pattern 

What if the input symbols are not statistically independent? If so, they are correlated, and the 

average n n kx x  is not zero even for 0k  . In this case, finding the average of the expression 

(8) becomes more complicated. We assume that input pattern is a stationary process and its 

statistical properties don’t change over time. Therefore, the average ,x k n n kC x x  , 
2

,0x xC 

could be non-zero but doesn’t change with n. Then dispersion of BLW becomes: 
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  

 
   .    (11) 

Mathematically, (11) is a sum of point-to-point products of the discrete correlation functions 

from both input pattern and the BLW pulse response. Factor 2 at the second sum means that 

summation should be done for positive and negative indices, which however were combined 

together due to symmetry. Upper index K in the second sum is a maximal correlation distance 



 

 

between the symbols of the input pattern so that , 0x kC  for k K . In many practical cases K

is less than N , the length of the BLW pulse response in UI. 

As we see from (11), it’s enough to find K sums
1

N

n n k

n

P P 



 and multiply them on the pattern 

correlation coefficients, then add the result to dispersion of an uncorrelated pattern.  

Having additional terms in (11) doesn’t mean that the resulted BLW noise increases. 

Correlation between samples of the BLW pulse response is strong, and their products remain 

positive in a wide range. However, correlation coefficients of the input pattern could be 

negative. Let’s consider NRZ 8b10b input pattern applied to the same channel. 

 

Figure 6. (a) Correlation function of 8b10b pattern, found from averaging over 10B symbols; (b) correlation 

function of BLW pulse response; (c) Their product, illustrating summands of (11) 

 

In Figure 6, the right side is a zoomed version of the left. Correlation function of 8b10b, (a), 

was found by averaging the products n n kx x  over 10B symbols. Correlation length, however, 

is only a few symbols. Since 8b10b is DC balanced, the sum of the correlation coefficients is 

zero. Correlation function of BLW pulse response (b) changes very slowly and remains 

positive. By summing their sampled products we get 2

y  1.7562e-10 [V2], or BLW noise 

sigma equal 13.254 [uV]. This is about 2 orders of magnitude below the one for uncorrelated 

pattern.  

 

BLW caused by periodic test pattern (PRBS-N and others) 

BLW noise is often modeled by applying periodic test patterns [9], which is simpler than 

performing full time domain or statistical analysis. Here we show how to find the response to 

such input. 

As shown above, we can find m-th state variable after N consecutive symbols using (6). 

However, our assumption was that all state variables were initially zero. Let’s consider two 

cases.  

If the period N of the test pattern is shorter than the length of the BLW response, we should 

first initialize state variables for any n-th symbol within a period as
1 2

, 1 1...N N

m n m n N m n N m n nS E x E x E x x 

        . If the input pattern is N-periodic, state 

variables become cyclostationary. Then, the stationary values for the same symbol within a 

period become
2 3

, , (1 ...)N N N

m n m n m m mz S E E E    . Here, we used the fact that the contribution 



 

 

from more distant periods is attenuated by an exponential multiplier   pK
N

mE , where integer

pK shows how many periods ago they occurred. Recalling the sum of infinite geometric 

progression, we get ,

,
1

m n

m n N

m

S
z

E



. Once the state variables have been found for any symbol in 

a periodic pattern, there is no need to find partial sums for the other symbols. We can apply a 

recursive formula , , 1 1m n m m n nz E z x   and find all other values in a period. Then, the 

respective values of BLW noise are
,

1

Re{ }
M

n m m n

m

y K z


 . 

Next, if the period of the input pattern exceeds the length of BLW response, we can truncate 

the summation when finding partial sum ,m nS . Also, there is no need in this case for 

cyclostationary correction. Then, we’ll have to go through one full period with recursive 

update, possibly using aggregation of symbols together, as we did in time domain analysis.  

 

(a)                                                                (b) 

Figure 7. (a) BLW noise caused by two periods of PRBS31Q (red) on top of BLW noise from random PAM-4 

pattern (blue); (b) almost Gaussian histogram from random PAM-4 pattern (blue) and asymmetrical from 

PRBS31Q (red) 

 

We applied this method to find BLW noise caused by two periods of PRBS31Q pattern, for 

the same channel and symbol interval, about 4B symbols total. The waveforms are shown in 

Figure 7a. The response from PRBS31Q demonstrates abnormally larger undershoots, down 

to -10.93 mV. Random PAM-4 produces nearly Gaussian distribution, with 0.9153x  mV 

(Figure 7b). It is smaller than that found statistically for NRZ input by factor 5 9 , which 

agrees with (10). The effects of ISI and BLW were computed with separate solvers working 

with different rates: BLW noise was updated once per 1K symbols using the “aggregated” 

input. 

SER plot and its cross-sections found from 4B symbol time domain simulation is shown in 

Figure 8. The effect of BLW noise on the SER profile is consistent with its histogram in 

Figure 7. Note however that the BLW noise shown in Figure 7 is what we miss in the eye 

diagram when ignoring BLW. The BLW error has opposite polarity. That’s why large 

negative undershoots in Figure 7 make the eye shrink in the positive direction. 



 

 

  

(a)                                                       (b)                                                    (c) 

Figure 8. (a) SER built from PRBS31Q test pattern; (b) vertical cross-section of SER at 0UIx  with 

uncorrelated input and BLW noise ignored (red), same with BLW considered (green), and with PRBS31Q and 

BLW noise considered (blue); (c) is the same zoomed around the central eye 

 

X. Important factors affecting BLW noise 

 

The value of DC blocking capacitor 

By reducing the value of the DC blocking capacitor we increase BLW cutoff frequency, and 

hence, the power of the BLW noise. Both random uncorrelated and PRBS31Q patterns 

behave very similar to Figure 7a, but demonstrate larger magnitude. Figure 9 shows the peak 

values for random uncorrelated PAM-4 pattern and PRBS31Q. General trend agrees with 

theoretical prediction (
1

~
dcC

), shown by dashed green. However, there is a certain 

deviation from this rule, especially for PRBS31Q. There are many reasons for that: BLW 

response is not exactly exponential, the pattern is not random uncorrelated and its LF 

spectrum may have low-frequency frequency resonances interacting with BLW response, etc. 

 

Figure 9. Peak values of BLW noise (red – positive, blue – negative) for random PAM-4 and PRBS31Q 

 

Transmit jitter 

Transmit jitter modifies symbol length and therefore modulates the average running imparity. 

For example, a DC balanced pattern affected by pulse interval modulation (PIM) may create 

considerable BLW noise. The effect is hard to predict because it depends on BLW transfer 



 

 

function and two independent processes: input pattern and its pulse interval modulation 

caused by jitter. From a BLW perspective, random or deterministic jitter is especially harmful 

when correlated with averaged imparity of the pattern. The “averaging window” can be as 

small as one symbol or may be as long as the BLW response duration. Consider a simple 

clock pattern as an example: one percent of duty cycle distortion results in a systematic BLW 

component that is 2% of 0sA H , or the signal level. Irregular patterns create a more 

complicated dependence of BLW noise on Tx jitter. Figure 9 illustrates the effect of duty 

cycle and sine jitter on BLW for PRBS31Q and random PAM-4 inputs. As we see, jitter may 

occasionally increase or decrease BLW noise over time.    

 
(a)                                                                (b) 

Figure 9. (a) BLW caused by PRBS31Q without jitter, with DCD and sine jitters; (b) same but for random 

uncorrelated PAM-4 pattern 
 

Channel equalization 

Linear equalization (FFE and CTLE) works in two different ways. On one hand, it reduces 

level separation by reducing signal transfer at low frequency. On the other, it lowers the 

BLW transfer function approximately in the same proportion. The sum effect on BLW-

related error is not clear. Two other factors could be reducing ISI but increasing crosstalk. 

Non-linear equalization (DFE) appears neutral to BLW. 

 

Figure 10. Top row (a-c): no equalization, while BLW cutoff frequency is 100kHz, 1MHz, and 10MHz. Bottom 

row (d-f): same as above by with identical FFE/CTLE equalization  
 

We performed a series of simulations while increasing BLW cutoff frequency (hence, BLW 

noise), with and without linear equalization. As we see from Figure 10, the eye diagrams 

becomes progressively closed (left to right), due to BLW noise increase. Equalization 



 

 

improves the eye, but doesn’t cope with BLW noise. On the other hand, equalization doesn’t 

increase BLW noise, as we see from comparing the two plots on the right.    

 

XI. Correlations with measurement results 

 

Experiment Design 

The purspose of the measurements is to correlate the effects of BLW on the global 

performance of the PAM4 signaling from the point of of the receiver. Effects of BLW are 

examined in the context of global attributes that qualify PAM4 signaling from the receiver 

angle. 

The following industry standard qualifiers are assessed: 

1. BER qualified eye openings, horizontal and vertical for all 3 PAM4 eyes. 

2. Data Dependent Noise (DDN) 

3. Signal levels 

4. Level linearity of PAM4 signals 

5. Eye closure penalty 

 

Test Patterns 

The ideal test pattern would be a PRBS31 that stresses most the BWL effects. The reality is 

that no acquisition system can acquire such long patterns with enough resolution, so instead 

the SSPRQ (Short Stress Pattern Random Quaternary) test pattern, with length set to 

PRBS16, 2^16-1 precisely, is used. The SSPRQ is comprised of 4 segments, each based on 

key stressors from PRBS31. It is a stressful pattern, but short enough to allow for advanced 

analysis of jitter, noise, and BER with Equalization. 

To compare results with less stressful patterns, measurements are performed with PRBS15 

and PRBS13, which have the benefit of higher throughput acquisition, but effective in 

assessing the intersymbol interference due to limited bandwdith. 

 

Data Source 

In order to isolate the effects of BWL from bandwidth limitations of the target DUT, we 

chose to perform the measurements at 26.5625Gbaud, PAM4 data. The PAM4 pulse 

modulation was selected because of the critical loss of 9dB signal-to-noise ratio when 

moving from NRZ to PAM4.  

 

The values of DC blocking capacitor 

The acquisition and analysis was performed on a data stream that included a series of DC 

blocking capacitors between the signal generator and the front end of the acquisition module.   

Testing was performed with: 

• No DC blocking capacitor inserted 



 

 

• 30nF, 220nF, 1uF capacitors inserted in the signal path. 

 

Signal Source and Acquisition System 

Signal source is a PAM4 pattern generator that provides all test pattern configurations. 

The acquisition system is a 60GHz bandwidth remote head module. 

 

Eye Measurements 

The PAM4 Eye openings, horizontal and vertical are evaluated at the receiver slicer position, 

as specified by IEEE standard. Since PAM4 signaling is typically using Forward Error 

Correction (FEC), the target BER for these Eye measurements is 5e-5. 

 

 

Figure 11 PDF Eye Modeling Receiver Slicer  

 

 

In following tables record the results of global jitter, noise and eye measurements for no 

blocking capacitor, and 3 different DC blocking capacitors. 

 



 

 

 

 
 

 
Figure 12 No DC blocking capacitor  

 

 

 
 

 
Figure 13 DC blocking capacitor – 30nF  

 



 

 

 

 
 

 
Figure 14 DC blocking capacitor – 220nF  

 

 

 
 

 
Figure 15 DC blocking capacitor – 1uF  

 

By inserting a 3nF capacitor the horizontal and vertical eye openings at 5e-5 BER drop as 

much as by a factor of 2.  

Total Noise increases due to BLW from about 30mV to 39mV for the top PAM4 eye. The 

plot below is a validation of the plot in figure 9, showing noise increase in function of DC 



 

 

block capacitor value. This is a reverse, showing the Vertical Eye opening in function of the 

DC block value. 

 

  
Figure 16 Vertical Eye opening function of DC block. 

 

A deeper look into the noise analysis for the acquired data, shows clearly that, as expected, the contribution to 

the increase of Total Noise is due to the Data Dependent Noise, which points to the BLW as the cause for the 

increase of the deterministic noise. 

 

 
Figure 17 Data Dependent Noise function of DC block. 

 

Global PAM4 measurements: Linearity Mismatch, Vertical Eye Closure, Level 

Deviations 

IEEE and OIF Standards have defined a number of global PAM4 measurements to assess the 

distortion of different sources, and that drive the overall BER performance of a serial link. 

The question to answer is which of these measurements are affected by the BLW. 

The Level Mismatch is a measure of the linearity, defined as the level deviation from an ideal 

level distribution. Ideal value for Level Mismatch Ratio is 1. As shown below, and as 

expected, the DC coupling capacitor does not affect the level symmetry.  

 



 

 

 

Figure 18 Level Mismatch ratio function of DC block. 

 

A third measurement to consider is Vertical Eye Closure penalty (VECP). Similar with the 

TDECQ (Transmitter and Dispersion Eye Closure Quaternary) used by the optical system, 

VECP identifies the smaller eye opening relative to an ideal given a signal amplitude. Ideal 

value is ~5dB for 3 equal PAM4 eyes. Correlating with the increase in the noise due to BLW, 

VECP will penalize the receiver. 

 

 

Figure 19 Vertical Eye Closure Penalty function of DC block. 

 

Relevance of Test Patterns 

In order to isolate the effects of Baseline Wander from effects of Intersymbol Interference 

and the effects of uncorrelated jitter and noise impairements, the testing was performed by 

using a series of standard PRBS patterns along the testing with the SSPRQ pattern. 

The relevance of using the long runs for each symbol level is illustrated in figure 20, which 

shows the vertical eye measurement results function of DC block for SSPRQ and PRBS13. 

While SSPRQ was designed for compliance testing for optical links, it proves to be the 

required test pattern for isolating the effects of BLW. 



 

 

 

 

XII. Conclusion 

 

In this paper we considered Baseline Wander, an important impairment that should be 

considered in SERDES design process. We analyzed the cause of BLW, its difference from 

ISI, and proposed its analysis by using two independent characteristics of a channel, at low 

and high frequency. This can also be performed using two step responses which cover 

different time regions and complement each other. A separate low-frequency BLW 

characterization allows its fast and accurate analysis, both in time and statistical domains. We 

considered a number of input pattern types: random uncorrelated, non-deterministic and 

correlated with known correlation function, and deterministic periodic. 

With multi-level modulation, and tighter signal margins in state of the art designs, BLW can 

no longer be ignored. We believe that the methods proposed in this paper would benefit 

different simulation and measurement approaches, including StatEye-type, IBIS-AMI, 

COM/PCIE/USB/JCOM compliance methodology, as well as BLW measurement techniques. 
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