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Abstract 
In modern SerDes channels, calculation of data dependent jitter and ISI is challenging 

since the traditional transient eye analysis has a slow convergence, and statistical 

methods have limited use. This paper suggests a methodology to train an end-to-end 

surrogate model using an expansion of orthogonal polynomials which is based on the 

generalized Polynomial Chaos theory. This model can be used for estimation of the 

receiver voltage and statistical analysis for jitter and eye calculations. A significant 

speedup compared to the transient eye analysis is observed since the length of simulation 

to train the model is much smaller, and the overhead is negligible. 
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1- Introduction 
In the past few decades, speed of high speed channels has increased exponentially [1], 

which has resulted in significant advancements in high speed systems. However, signal 

integrity issues that used to be trivial, cannot be ignored as the frequency increases. 

Degradation of transmitted signal is seen in amplitude and timing, which are called 

amplitude noise and timing jitter, respectively. In this paper we focus on jitter; 

nevertheless, a parallel discussion can be done for amplitude noise. In general, jitter is 

divided to deterministic and random. Random jitter is unbounded, and it is mainly caused 

by physical properties of materials. Moreover, it can be modeled with Gaussian 

distributions, and it is common to overlay random jitter on the signal after simulation of 

the system. On the other hand, deterministic jitter is bounded, which includes Data 

Dependent Jitter (DDJ), Bounded Uncorrelated Jitter, and Periodic Jitter. This 

classification is shown in Fig. 1. A source of DDJ is InterSymbol Interference (ISI), 

which is the deviation added to a pulse response from the response of its neighboring 

pulses [2]. Since ISI spans through several pulse responses, it is challenging to model. 

Therefore, in this paper a new approach for modeling DDJ caused by ISI is presented, 

which can be combined with modeling techniques for other types of jitter to simulate the 

final form of the received signal.  

In digital communication, a signal is often evaluated with an eye diagram. In simulation, 

the traditional method to draw the eye diagram is with running a very long transient 

simulation. Then, results are overlaid in one Unit Interval (UI), which resembles an eye 

shape. An open eye means a better quality for signal, and when its height and width 

decreases, the quality degrades. We refer to this method as transient eye. This method is 

straightforward, and provides a great accuracy for lower speeds. However, as the Bit 

Error Rate (BER) of the channel decreases, the transient simulation needs to be longer, 

which can be prohibitive for modern channels. For instance, a BER of 10-12, which has 

become common in the industry, needs to be simulated for 1012 bits on average to 

experience one failure. Obviously, running a simulation with such length is not usually 

possible. Hence, designers do a shorter simulation up to 1010 bits, and find the error rate 

with approximation and extrapolation techniques, which reduces the accuracy. Moreover, 

this method requires a large amount of memory to store the transient simulation.  

To address the issues with transient eye, statistical eye analysis methods have been 

developed. These methods can quickly predict the eye diagram from impulse response of 

the channel, when the system is Linear Time Invariant (LTI). One of these approaches is 

the StatEye method [3], which was introduced earlier than most of the similar 

approaches. In this method, initially the pulse response is calculated: 

𝑟(𝑡) = 𝑝(𝑡) ∗ ℎ(𝑡),                                                   (1) 

where , ∗ represents the convolution, r(t) is the pulse response at the receiver, h(t) is the 

channel’s impulse response, and p(t) is the input pulse, which is determined with respect 

to the baud rate. Due to ISI, r(t) spans over multiple unit intervals; however, the response 

to a sequence of pulses can be found with superposition of shifted pulse responses 

because of the LTI condition. Therefore the receiver voltage is approximated as: 

�̂�(𝑡) = 𝛽0𝑟(𝑡) + ∑ 𝛽𝑘𝑟(𝑡 − 𝑘𝑇)∞
𝑘=−∞

𝑘≠0

,                                   (2) 



 

where t is the sampling time point, T shows length of one UI, and 𝛽𝑘 represents value of 

the k-th transmitted symbol, which can be zero or one. In other words, 𝛽0𝑟(𝑡) is response 

of the current pulse, and 𝛽𝑘𝑟(𝑡 − 𝑘𝑇) is the ISI effect from pre-cursors and post-cursors 

of neighboring pulses. Equation (2) is the idea behind the StatEye method, and it can 

predict the receiver voltage for any combination of input bits; however, it is often time 

and memory consuming to calculate (2) for all possible combinations. Therefore, [3] 

suggests a statistical approach, that considers probability of different ISI combinations, 

and finds the distribution of ISI. Using this approach, an array of Probability Distribution 

Functions (PDFs) of ISI is produced for different sampling points through the UI. By 

tracking these distributions and connecting the points with same probability, the 

statistical eye is created. Moreover, results can be used to find BER. Knowing 

distribution of receiver voltage, BER is found as ratio of the distribution that crosses time 

and voltage thresholds, causing error. Furthermore, a bathtub curve is calculated by 

finding BER over one UI [1]. 

StatEye provides a quick estimation of the eye diagram; however, it is only applicable to 

LTI systems because of using superposition in (2). Unfortunately, this issue can be a 

problem in simulation of high speed links since sources of nonlinearity, such as I/O ports, 

can be present and constitute to jitter. Moreover, asymmetrical rising and falling edges 

are another sign of non-LTI systems, and can be present in signaling systems. Finally, 

StatEye has difficulties in modeling transmitter jitter [4]. Because of these issues, StatEye 

produces inaccurate results in some practical examples. 

Recent works have tried to expand the idea in StatEye to non-linear cases. In [4], it is 

suggested to estimate the receiver voltage with responses of a rising edge and a falling 

edge. This is similar to (2); however, the difference between rising edge and falling edge 

responses is taken into account. The receiver voltage is calculated as: 

�̂�(𝑡) =  ∑ 𝛼𝑘𝜐𝑟(𝑡 − 𝑘𝑇) + 𝛽𝑘𝜐𝑓(𝑡 − 𝑘𝑇)∞
𝑘=−∞ ,                           (3) 

 
 

Fig. 1. Classification of jitter types. 
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where, 𝜐𝑟(𝑡) and 𝜐𝑓(𝑡) are the responses to rising and falling edges, respectively. 

Moreover, 𝛼𝑘 and 𝛽𝑘 are zero or one factors that show the occurrence of rising and 

falling edges. 𝛼𝑘 is one when a rising edge happens, and it is zero otherwise. Similarly, 

𝛽𝑘 is one when a falling edge happens, and it is zero otherwise. The receiver voltage is 

found with (3); however, finding the worst-case eye or the statistical eye is more 

challenging than the StatEye method since the edge responses are not independent. For 

instance, there should be a rising edge between two falling edges. Therefore, [4] develops 

an inductive technique to find the distribution of receiver voltage. This method starts with 

the response to a rising edge and a falling edge, which are followed by n high and low 

bits, respectively, where n is the number of bits with effective ISI. Distribution of 

receiver voltage after n bits is two impulses and known since ISI has disappeared. Then, 

this distribution is used to find distribution of the receiver voltage after n-1 bits with 

convolution equations. This process is continued for n steps to find distribution of the 

receiver voltage after zero bits, or in other words distribution of the receiver voltage. 

Finally, the receiver voltage distribution is used to find the statistical eye diagram, BER, 

and bathtub curve similar to the StatEye approach. 

Although the edge response method improves the accuracy of statistical eye for non-LTI 

systems, it is not comprehensive. It requires some internal knowledge of the system, and 

needs to know the source of nonlinearity. In other words, it does not work if nonlinearity 

is caused by a source other than the asymmetric rising and falling edges. Moreover, it is 

an extension of the superposition method, and might fail based on the nonlinearity. 

Finally, statistical methods might still need a large amount of memory based on their 

implementation.  

Since the transient eye analysis is time and memory consuming, and statistical eye 

analysis methods have limited use, a new approach is proposed in this paper, based on the 

work in [5]. This approach takes an uncertainty quantification point of view, where the 

propagation of randomness from input to output random variables is studied. This relates 

to the problem studied in this paper since we are looking to find the pattern between data 

and the resulted jitter, where both have a random nature. The traditional method for 

uncertainty quantification is Monte Carlo (MC) analysis; however, where high accuracy 

is needed, MC would be extremely time consuming. Therefore, in recent decades several 

efficient uncertainty quantification approaches have been developed [6] – [19]. A popular 

concept in developing such methods, is the generalized Polynomial Chaos (PC) theory 

[9], where random variables are estimated as sum of a series of orthogonal polynomials. 

This work is inspired by the similarities between the transient eye analysis and MC, and 

proposes a modified uncertainty quantification approach, based on the PC expansion, to 

drastically decrease the computation cost. The PC expansion is selected since it provides 

statistics of jitter and eye analysis prior to calculating the eye diagram, and with using 

significantly less memory. Furthermore, the PC expansion is used to develop surrogate 

models for receiver voltage and drawing the actual eye diagram. It is worth noting, that 

the proposed surrogate models do not have a restriction on nonlinear functions, and can 

be used for non-LTI systems. 



 

This work trains a surrogate model from a small number of samples to imitate behavior 

of a system. However, in machine learning many approaches have been suggested for 

developing surrogate models. One of the most popular approaches in this area is 

modeling with Neural Networks (NN). Previously, nonlinear drivers have been modeled 

in [20], where recurrent NNs were used to develop models for the nonlinear components. 

However, in general training NNs is a more complicated and time consuming task than 

PC models, and their size quickly increases with memory of the channel. Moreover, NN 

models need to be evaluated at numerous samples, similar to MC, to provide statistical 

results. This takes a large amount of memory; however, PC models provide the statistical 

results at no extra cost after training. For these reasons, PC theory is used to develop the 

surrogate model of the channel. 

The rest of this work is organized as follows. In section 2, the PC theory is discussed. 

Next, the proposed approach is explained in section 3. Section 4 represents an example 

for evaluation of this method. Finally, the paper is concluded in section 5. 

 

2- Polynomial Chaos theory 
 

Polynomial Chaos expansion [9] is commonly used in uncertainty quantification 

approaches. In this section, its details are discussed. 

 

2-1- PC expansion 

PC expansion suggest using sum of a series of orthogonal polynomials for approximating 

smooth functions of random variables. In other word, for one dimension a function of 

random variable λ is estimated as: 

𝑓(𝜆) = ∑ 𝑐𝑖𝜙𝑖(𝜆)∞
𝑖=0 ,                                                  (4) 

where 𝑐𝑖 shows a series of unknown coefficients, and 𝜙𝑖(𝜆) represents the polynomials, 

which are orthogonal with respect to the distribution of λ. Orthogonality condition is 

defined as: 

〈𝜙𝑖(𝜆), 𝜙𝑗(𝜆)〉 = ∫ 𝜙𝑖(𝜆)𝜙𝑗(𝜆)𝜌(𝜆)𝑑𝜆
𝛺

= 𝛼𝑖
2𝛿𝑖,𝑗,                         (5) 

with 〈, 〉 being the sign for inner product, and Ω being the random space. Moreover, 𝜌 is 

the distribution of λ, 𝛿𝑖,𝑗 is the Dirac function, and αi is a scalar, which can be calculated 

with a closed-form equation. For simplification, we always normalize the polynomials; 

thus, αi would always be equal to one. Furthermore, for common distributions there are 

known polynomials that are orthogonal with respect to them. For instance, Legendre and 

Hermite polynomials are orthogonal with respect to uniform and normal distributions, 

Table. 1. The first five normalized Hermite polynomials 

 Normalized Hermite Polynomials 

𝐻0(𝜆) 1 

𝐻1(𝜆) 𝜆 

𝐻2(𝜆) (𝜆2 − 1)/√2 

𝐻3(𝜆) (𝜆3 − 3𝜆)/√6 

𝐻4(𝜆) (𝜆4 − 6𝜆2 + 3)/(2√6) 

 



 

respectively. Random Non-Return-to-Zero (NRZ) pulses, considered in this paper, have 

zero and one values with equal probability. Hermite polynomials are orthogonal to this 

distribution as well; hence, they are used for developing the proposed PC models. 

Hermite polynomials are generated analytically using the following equation: 

𝐻𝑖(𝜆) = (−1)𝑖𝑒
𝜆2

2
𝑑𝑖

𝑑𝜆𝑖 𝑒−
𝜆2

2 ,                                            (6) 

with 𝐻𝑖(𝜆) being the i-th degree Hermite polynomial. Moreover, the normalization factor 

is calculated as 𝛼𝑖
2 = 𝑖!. As an example, 𝐻0(𝜆) to 𝐻4(𝜆) are presented in Table. 1.  

In the multidimensional case, the PC expansion is extended for a vector of n variables, 

𝝀 = [𝜆1, 𝜆2, … , 𝜆𝑛], as: 

𝑓(𝝀) ≈ ∑ 𝑐𝑖𝜙𝑖(𝝀)𝑃
𝑖=0 ,                                                   (7) 

where the expansion is truncated after P + 1 terms for practical reasons. This length is 

calculated as: 

𝑃 + 1 = (
𝑚 + 𝑛

𝑚
) =

(𝑚+𝑛)!

𝑚!𝑛!
,                                             (8) 

where, m is the maximum order used in the polynomials, which usually does not need to 

be greater than 2 or 3 for smooth functions.  Furthermore, the multidimensional 

polynomials are generated using a subset of the tensor product of one-dimensional 

polynomials: 

𝜙𝑖(𝝀) = ∏ 𝜙𝒅𝑗
(𝜆𝑗)𝑛

𝑗=1 ,                                                 (9) 

where 𝒅 = [𝑑1, 𝑑2, … , 𝑑𝑛] is a vector showing the index of selected one-dimensional 

polynomials to generate 𝜙𝑖, and it is determined using the following condition: 

‖𝒅‖1 = 𝑑1 + 𝑑2 + ⋯ + 𝑑𝑛 ≤ 𝑚.                                       (10) 

This condition represents a linear restriction, which is shown in Fig. 2 (a) for two 

dimensions.  

 
                                  (a)                                                                                        (b) 
  

Fig. 2. Illustration of restrictions for choosing polynomials for a case with two dimensions. a) Linear PC 

condition. b) Hyperbolic HPC condition. 



 

It is worth noting, that (7) can be used as a surrogate model to estimate 𝑓(𝝀) at arbitrary 

samples. However, its size, shown in (8), increases with a rate of 𝑂(𝑛𝑚), which limits the 

use of PC expansion to a relatively low number of variables. This problem is called curse 

of dimensionality, and to address it a modified PC expansion, called Hyperbolic 

Polynomial Chaos (HPC), is developed [17]. In this approach, it is noted that not all the 

polynomials in (7) are equally important. In fact, based on sparsity of effects [21], it is 

known that polynomials with a lower degree of interaction between the random variables 

have a higher impact on the output. Alternatively, it means these terms have a higher 

coefficient in the PC expansion. Therefore, a new expansion is developed: 

𝑓(𝝀) ≈ ∑ 𝑐𝑖𝜙�̂�(𝝀)�̂�
𝑖=0 ,                                               (11) 

where 𝜙�̂�(𝝀) shows the nontrivial polynomials; which are selected with (9) and the 

following condition: 

‖𝒅‖𝑢
𝑢 = 𝑑1

𝑢 + 𝑑2
𝑢 + ⋯ + 𝑑𝑛

𝑢 ≤ 𝑚𝑢,                                   (12) 

with 0 < 𝑢 < 1 being a factor for setting the level of reducing the expansion. This 

condition represents a hyperbolic restriction, shown in Fig. 2. (b) for two dimensions. 

HPC limits the polynomials to the ones with a higher impact, which are located closer to 

the multidimensional axis. Moreover, it is proven that the polynomials in both (7) and 

(11) follow the orthogonality condition in the multidimensional space. In this paper, the 

proposed approach uses (11) for modeling the random variables. 

 

2-2 Training the PC models 

Training the PC models is done by finding the coefficients in (11). Several methods have 

been introduced to find the unknown coefficients in the PC expansion [6]-[18]. In 

general, these methods are divided to intrusive and nonintrusive. Intrusive methods, such 

as Stochastic Galerkin [12], replace all the random variables in the equations governing 

the system (e.g. Kirchhoff’s laws, Telegrapher’s equations, etc.) with their PC expansion. 

The replacement results in development of an augmented and more complex set of 

equations. Then, PC coefficients are found by solving these augmented equations. 

Although intrusive approaches are relatively more accurate, commercial solvers do not 

support this type of analysis, and these methods need to develop new stochastic solvers or 

augmented systems to find the coefficients. Moreover, size of the augmented equations 

grows drastically with number of random variables, and the CPU cost is often prohibitive 

when there are more than a handful of random variables. On the other hand, non-intrusive 

approaches are based on running simulations for a number of sample points. Hence, these 

methods do not need to develop new solvers or systems, and work with deterministic 

commercial solvers. For instance, Monte Carlo is a non-intrusive approach. Although 

non-intrusive PC approaches are less accurate compared to intrusive approaches, their 

computational cost scales at a lower rate with number of random variables. Therefore, 

they can be applied to a higher number of random variables. In this category, a 

straightforward technique to find the PC coefficient is linear regression [10], [11]. 

The linear regression method is used in the proposed approach, and it is discussed next. 

In this method, initially the system is sampled at N points, with respect to the distribution 

of random variables. The sample are labeled as 𝝀1, 𝝀2, … , 𝝀𝑁. Moreover, 𝑁 ≥  𝑘𝐿, where 

L is the length of PC expansion, and k is equal or greater than 2 or 3. By using a 



 

simulation tool and evaluating the system at these samples, the outputs 𝑓(𝝀1), 𝑓(𝝀2), … ,
𝑓(𝝀𝑁) are obtained. Samples and the corresponding outputs form the training data, and 

by plugging them in the PC expansion, results are written in the matrix form: 

𝑨𝚪 = 𝑬,                                                           (13) 

where  

𝑨 = [
𝜙0(𝝀1) … 𝜙𝑃(𝝀1)

⋮ ⋱ ⋮
𝜙0(𝝀𝑁) … 𝜙𝑃(𝝀𝑁)

] , 𝚪 = [

𝑐0

⋮
𝑐𝑃

] , 𝐄 = [
 𝑓(𝝀1)

⋮
 𝑓(𝝀𝑁)

].                       (14) 

The system shown in (13) is oversampled since 𝑁 > 𝑃 + 1; thus, it does not have a 

perfect solution. Nevertheless, the error can be minimized by using the least square 

method: 

�̂� =
𝐴𝑟𝑔𝑚𝑖𝑛

𝚪
‖𝑬 − 𝑨𝚪‖2

2,                                             (15)  

It is proven that the error is minimized when: 

�̂� = (𝑨𝜏𝑨)−1𝑨𝜏𝑬,                                                   (16) 

where, τ is the transpose sign.  

After finding the coefficients, they can be used to provide mean and variance of the 

output at no extra cost. Mean of 𝑓(𝝀) is defined as: 

𝐸(𝑓(𝝀)) = ∫ 𝑓(𝝀)𝜌(𝝀)𝑑𝝀
Ω

.                                         (17) 

Calculation of this multidimensional integral can be challenging; however, by plugging 

the PC expansion of 𝑓(𝝀) in (17), and considering the similarities between (5) and (17), it 

can be written as: 

𝐸[𝑓(𝝀)] ≈ ∑ 〈𝑐𝑖𝜙𝑖(𝝀), 𝜙0(𝝀)〉𝑃
𝑖=0 = 𝑐0.                               (18) 

In other words, mean of a random variable is equal to the first coefficient in its PC 

expansion. Furthermore, Variance of 𝑓(𝝀) is defined as: 

𝑣𝑎𝑟[𝑓(𝝀)] = 𝜎2 = 𝐸[(𝑓(𝝀) − 𝐸[𝑓(𝝀)])2].                             (19) 

Like (18), by replacing the PC expansion of 𝑓(𝝀), and using the definition of inner 

product, (19) is simplified to: 

𝑉𝑎𝑟[𝑓(𝝀)] = 𝜎2 = ∑ 𝑐𝑖
2𝑃

𝑖=1 .                                           (20) 

Alternatively, it can be said that variance of a random variable is equal to sum of square 

of all the coefficients, except the first one, in its PC expansion.  

To have a better evaluation of random variables, it is necessary to see their distribution. 

Therefore, PC surrogate models are used to find PDFs of random variables. This is done 

by evaluating (11) at several sample points similar to MC. However, this evaluation is 

much faster since it is analytical, and no additional simulation is needed. 

 

 



 

3- The proposed modeling approach 
In this section, the idea behind the proposed approach and details of its implementation 

are discussed. 

 

3-1- Intuition behind the proposed approach 

The intuition behind this work is similarities between the transient eye and Monte Carlo 

analysis. We observed that eye parameters such as jitter are random variables and a 

function of random input bit sequences. In fact, transient eye is a method that finds the 

behavior of such parameters with running a tedious time domain simulation, while it tries 

numerous data patterns. On the other hand, in MC analysis randomness in the system is 

evaluated with running simulations at numerous samples, which are selected randomly. 

Therefore, by treating each data pattern as a sample, transient eye resembles the MC 

analysis. Moreover, both methods provide a straightforward implementation with high 

accuracy; however, their computation cost can be prohibitive for complex systems since 

they need to consider many possibilities. In uncertainty quantification studies, several 

approaches have been developed to provide results as accurate as MC, while the 

computation cost is kept low. Our goal is to develop a similar methodology with high 

efficiency for the eye analysis.  

This idea is illustrated in Fig. 3, where the simplified response to a sample pulse train, 

ending in a rising edge, is shown in Fig. 3 (a). Next, the bits before the rising edge are 

slightly altered in Fig. 3 (b), which changes the ISI effect. The effect of the new ISI is 

seen in this figure as movement of the rising edge, while the old rising edge is shown in a 

gray shade. The input is altered again in Fig. 3 (c) and (d), which has resulted in further 

changes in the rising edge, and it is seen that the rising edge might move to left or right 

based on the previous bits. In the proposed approach, variations in the input pulse train 

and the output are considered as random variables, and the relation between them is 

 
Fig. 3. Simplified illustration of different input pulse sequences and the corresponding rising edge. 



 

captured with the PC expansion. In other words, the proposed approach learns the pattern 

between data and ISI from a short simulation. Then, it is generalized by training a 

surrogate model, and it is used to estimate the output for any possible combination of 

input bits. It is worth noting that this approach is applicable to non-LTI systems. 

 

3-2- Implementation of the proposed approach 

In this section, implementation of the proposed PC approach for estimation of jitter and 

eye diagram, is discussed. First, we need to note that the output signal covers a wide 

range of variation, when it switches between low and high. This is shown in a typical eye 

diagram in Fig. 4 (a). Using conventional PC to model a variable with large variance, 

usually does not provide accurate results. To address this issue, we exploit the fact that 

eye diagram is comprised from four distinct transitions, which are caused by the last two 

bits, and are zero to zero, zero to one, one to zero, and one to one. Bits prior to these two 

cause ISI, and make each transition to deviate from its average value. This is shown by 

drawing the distribution of receiver voltage at the red line in Fig. 4 (a), which is 

represented in Fig. 4 (b). In this figure, four distinct distributions are observed, which 

correspond to the four transitions. It is seen that each distribution has a much smaller 

variation compared to the original eye; therefore, we develop a separate sub-model for 

each transition. Inputs to each model are the values of n previous bits except the last two, 

which are used to select the sub-model. Hence, the input bits are labeled as 𝝀 =
[𝜆1, 𝜆2, … , 𝜆𝑛−2]. Since the input pulse train is ideal, these variables are either zero or 

one, and set randomly with equal chance. Next, two types of output are defined. The first 

type is eye diagram parameters such as jitter, which is directly and efficiently modeled. 

The second type is the receiver voltage through one UI, which is used for drawing the 

actual eye-diagram.   

To develop PC models, first the training data needs to be collected, which is done by 

sampling different combinations of previous bits. However, the CPU cost would be 

exorbitant if a separate simulation is run for each sample. Therefore, all the samples are 

extracted from a single simulation, which is significantly shorter than the transient eye 

simulation and much longer than �̂� + 1 UIs. To extract the samples, we move backward 

 
                                          (a)                                                                             (b) 

Fig. 4. Demonstrating a typical eye diagram and possible transitions of the output. a) Eye diagram.     

b) Distribution of receiver voltage at a sampling time point. 

 



 

from the end of simulation, and at every UI record the outputs and their corresponding 

previous n bits. Next, the samples are divided to four groups based on transition of the 

last two bits to be used in relevant sub-models. 

In modern high-speed channels, number of bits causing ISI can span through a large 

number of bits (e.g., 50). Therefore, developing a conventional PC model, shown in (7), 

would be extremely large and prohibitive. To address this issue, we suggest using the 

HPC expansion, represented in (11). In fact, through numerical examples it was observed 

that a u factor close to zero could provide accurate results. This low factor removes the 

interactions between dimensions, and only leaves �̂� = 𝑚 ∗ 𝑛 + 1 polynomials, which are 

located on the axis of the multidimensional space. Therefore, size of the model increases 

linearly with number of considered previous bits. 

To directly model jitter, only two of the transitions, which are rising and falling edges, 

need to be considered. The corresponding models are: 

𝐽𝑟(𝝀) ≈ ∑ 𝐶𝑟_𝑖𝜙�̂�(𝝀)�̂�
𝑖=0                              

         𝐽𝑓(𝝀) ≈ ∑ 𝐶𝑓_𝑖𝜙�̂�(𝝀)�̂�
𝑖=0 ,                                              (21) 

where 𝐶𝑟_𝑖 and 𝐶𝑓_𝑖 are the coefficients of rising and falling edge sub-models, 

respectively. Equation (21) can be used as a surrogate model to estimate jitter for any 

combination of input data. Furthermore, we calculate jitter of rising and falling edges 

separately. Since their average is zero, their RMS value is equal to standard deviation, 

which is directly calculated in (20). It is worth noting, that the RMS value is found 

without calculating the full eye diagram, or using an approach like MC to evaluate the 

surrogate model at numerous samples. Therefore, significant savings in computational 

cost and memory is observed.  

Although jitter provides a measure for degradation of signal, we generally prefer to see 

the actual eye diagram too. To do so, PC surrogate models are developed for the receiver 

voltage at each sampling time point on a UI: 

        𝑉00(𝑡, 𝝀) ≈ ∑ 𝐶00_𝑖(𝑡)�̂�𝑖(𝝀)�̂�
𝑖=0                          

        𝑉01(𝑡, 𝝀) ≈ ∑ 𝐶01_𝑖(𝑡)�̂�𝑖(𝝀)�̂�
𝑖=0                         

        𝑉10(𝑡, 𝝀) ≈ ∑ 𝐶10_𝑖(𝑡)�̂�𝑖(𝝀)                       �̂�
𝑖=0   

        𝑉11(𝑡, 𝝀) ≈ ∑ 𝐶11_𝑖(𝑡)�̂�𝑖(𝝀)�̂�
𝑖=0 ,                                        (22) 

where, 𝐶00_𝑖, 𝐶01_𝑖, 𝐶10_𝑖, and 𝐶11_𝑖 show the coefficients of steady zero, rising edge, 

falling edge, and steady one sub-models, respectively. Equation (22) is used to estimate 

the receiver voltage for any combination of data, additionally statistics of each transition 

are found with (18) and (20) at no extra cost. Nevertheless, to draw the eye diagram, (22) 

needs to be evaluated at numerous number of points. There are 2n possible combinations 

for the input bits; however, evaluating the model for all of them is not possible when n is 

large. Hence, we choose a random subset of them, which includes about one million 

samples, to draw the eye diagram. 

Advanced regression techniques exist in the literature [15], [18]; however, they require 

complex sampling techniques, which is not possible in the setting of the problem 

considered in this paper. Therefore, the linear regression and least square method, 



 

described in 2-2, is used to find the coefficients in (21) and (22). First, N training samples 

are extracted from a single simulation, and are labeled as 𝝀1 to 𝝀𝑁. Then, the coefficients 

are found using (16). For instance, regarding the 𝑉01(𝑡, 𝝀) sub-model in (22): 

𝚪𝟎�̂�(t) = (𝑨𝜏𝑨)−1𝑨𝜏𝑬(𝑡),                                             (23) 

where 

𝚪𝟎�̂�(t) = [𝐶01_0(𝑡), 𝐶01_1(𝑡), … , 𝐶01_𝑃(𝑡)]
𝜏
.                             (24) 

A few edits are done to make the matrix inversion in (22) possible. First, if a random 

variable in 𝝀 is zero, it is converted to -1, otherwise several polynomials would be zero 

and equal. Moreover, matrix A needs to be full rank. Because all the variables are either  

-1 or 1 this might not be true. Therefore, columns that are a linear conversion of other 

columns are removed. This does not decrease the accuracy since these columns do not 

provide any additional information. Moreover, note that since the inputs are the same for 

sub-models in (21) and (22), the same matrix A is used for all the model. To further 

increase the efficiency, this matrix is calculated and stored beforehand, and a known 

sequence of bits is used for training. This method covers the DDJ estimation; however, it 

can be combined with other types of jitter estimation methods, such as random jitter, to 

provide a more general estimation approach. 

Finally, it is worth noting that this approach is different from other HPC calculation 

methods [17]. Since, it modifies the process to be efficient and applicable to jitter and eye 

estimation for high speed channels. Modifications include developing different sub-

models for different transitions, and the sample extraction method. 

 

 
Fig. 5. A graphical representation of the SerDes channel in the example. 

 

 
Fig. 6. Impulse response of the SerDes channel. 



 

4- Numerical example 
To show performance of the proposed approach the SerDes channel, pictured in Fig. 5, is 

considered. This channel is provided by IBM, and it includes two processor packages. 

These packages communicate with each other and are interfaced to a board with two 

hybrid Land Grid Array (LGA) connectors. Moreover, the transmitter and receiver 

processor packages contain 85 Ohm differential stripline wiring in GZ41 material (Dk ~ 

Table. 2. RMS values of jitter in rising and falling edges. 

 Rising edge jitter RMS Falling edge jitter RMS 

Transient eye analysis 7.1 ps 7.1 ps 

Proposed PC approach 7.1 ps 7.0 ps 

 

 
Fig. 7. Estimation of the output for 50 bits using the voltage surrogate models. 

 

 
Fig. 8. Mean +/- standard deviation of the receiver voltage for steady zero, rising edge, falling edge, 

and steady one transitions through one UI. 



 

3.31 and Df ~ 0.0092 at 1 GHz), and have 31 mm and 34 mm length, respectively. 

Furthermore, the board contains two differential PCB vias with an active via length of 

150 mil, and stub length of 20 mil. It contains 4 inches of total wiring, including 1 inch of 

necked down pin area wiring in the shadow of each processor, and 2 inches of 85 Ohm 

differential open area wiring. Additionally, the dielectric material utilized for the board is 

a low loss material, having a Dk ~ 3.95 and Df ~ 0.0084 at 1GHz. The passive channel 

loss at 8 GHz is ~11 dB. Finally, the input signal is an NRZ pulse train with a bit rate of 

16 Gb/s.  

The impulse response of the channel is shown in Fig. 6. Moreover, this channel is 

simulated with HSSCDR channel simulator [22], provided by IBM, and the rest of 

computations, including development of HPC models, is done in MATLAB R2015a. 

Note that HSSCDR is a linearized simulator; however, the proposed approach does not 

take advantage of the linearity condition. Hence, it can be applied to similar commercial 

software with nonlinear components. 

 
         (a) 

 

 
         (b) 

Fig. 9. Eye diagram and peak to peak jitter of the receiver voltage. a) Calculated with the traditional 

transient eye. b) Estimation with the proposed approach. 

 



 

In this example, about n = 50 bits show nontrivial ISI effect. Therefore, each of the four-

sub-models has 48 dimensions, which means the conventional PC models would be too 

large. Therefore, the HPC expansion, with u near zero, is used. Maximum order of 

expansion, m = 3, is selected for developing the models; thus, length of expansion �̂� is 

equal to 145.  

For comparing the accuracy of PC models, a transient eye analysis with a sequence of 

one million bits is done. On the other hand, for training the PC models a simulation with 

only 10000 bits is used; thus, the proposed approach has decreased the length of actual 

simulation 100 times. For developing jitter sub-models, 2000 samples for each sub-model 

is extracted from the short simulation, and by using the linear regression technique, the 

coefficients are found. Next, jitter RMS values are directly found from the coefficients, 

and presented in Table. 2. Additionally, they are compared with the results from transient 

eye, and it is observed that the proposed approach shows a great accuracy in this 

estimation. 

Next, to develop the receiver voltage sub-models, 2000 samples per transition are 

extracted from the same short simulation, and they are used to find the PC coefficients. 

The voltage sub-models are put together to form a surrogate model, which predicts the 

receiver voltage for any combination of input bits. This surrogate model is used to predict 

the response to a new sequence of 50 bits, which is represented in Fig. 7, and compared 

with simulation results from HSSCDR. Moreover, the coefficients from receiver voltage 

sub-models are used to find the mean and standard deviation of possible voltage 

transitions. These statistics are represented in Fig. 8, where for each transition mean +/- 

one standard deviation is shown, and compared with the same statistics from the one 

million bits simulation. It is observed that both figures show a perfect match between the 

proposed approach and the actual simulation. 

Finally, the eye diagram is generated by evaluating the surrogate model of the receiver 

voltage at one million new samples, which are randomly selected. Eye diagrams found 

with the original transient eye and this method are shown in Fig. 9 (a) and (b), 

respectively. For technical reasons, only 30000 out of one million responses are shown in 

these figures. Furthermore, the peak to peak jitter, found from the eye diagrams, are 

shown in Fig. 9. It is observed that the estimated eye and peak to peak jitter are a good 

approximation of the actual values.  

 

5- Conclusion 
Calculation of data dependent jitter and eye diagram can be challenging for modern high-

speed channels since the traditional transient eye is extremely time consuming, and the 

statistical methods are only applicable to LTI systems. Hence, in this paper an uncertainty 

quantification approach is suggested. This approach uses a hyperbolic Polynomial Chaos 

expansion to develop a surrogate model for a case with a large number of random 

variables. Then, the surrogate model is used to find estimations and statistics of jitter and 

eye diagram. Furthermore, the surrogate model is comprised from multiple sub-models to 

limit the variance of output. Models are trained with linear regression and a single short 

transient simulation, which can be 100 times shorter than the simulation necessary for 

transient eye. Additionally, the overhead cost for developing the surrogate model is 

negligible in comparison to the cost of transient simulation of complex channels. 

Moreover, this method can handle non-LTI systems. Finally, a numerical example is 



 

provided which shows the accuracy and efficiency of the proposed approach, when 

applied to a commercial SerDes channel. 

 

Acknowledgement 
This material is based upon work supported by the National Science Foundation under 

Grant NO CNS 16-24810 – Center for Advanced Electronics through Machine Learning 

(CAEML). 

 

References 
[1] T. Wu, F. Buesink, and F. Canavero. "Overview of signal integrity and EMC design 

technologies on PCB: Fundamentals and latest progress." IEEE transactions on 

electromagnetic compatibility, vol. 55, no. 4, pp. 624-638, 2013. 

[2] M. P. Li, Jitter Noise and Signal Integrity at High-Speed, Upper Saddle River, NJ, 

Prentice Hall, 2007, pp. 1-17, pp. 119-128. 

[3] A. Sanders, M. Resso, J. D. Ambrosia, “Channel Compliance Testing Using Novel 

Statistical Eye Methodology”, DesignCon, 2004. 

[4] M. Tsuk, D. Dvorscak, C. S. Ong, J. White, “An Electrical-Level Superposed-Edge 

Approach to Statistical Serial Link Simulation,” International Conference on Computer-

Aided Design, November 2009, ACM. 

[5] M. Ahadi, J. Hejase, W. Becker, M. Swaminathan, “Jitter and Eye Estimation in 

SerDes Channels using Modified Polynomial Chaos Surrogate Models”, in Proc. 27rd 

IEEE Conf. on Electrical Peroformance and of Electronic Packaging and Systems, Oct. 

2018. 

[6] R. G. Ghanem, and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, 

NY, Springer, 1991. 

[7] P. Manfredi, “High-speed interconnect models with stochastic parameter variability,” 

Ph.D. dissertation, Informat. Comm. Tech., Politecnico di Torino, Turin, Italy, 2013 

[8] D. Xiu, “Fast numerical methods for stochastic computations: a review”, 

Communications in computational physics, vol. 5, no. 2-4, pp. 242-272, 2009 

[9] D. Xiu, G. E. Karniadakis. "The Wiener-Askey polynomial chaos for stochastic 

differential equations." SIAM journal on scientific computing, vol. 24, no. 2, pp. 619-644, 

2002. 

[10] D. Spina, F. Ferranti, G. Antonini, T. Dhaene and L. Knockaert, “Non-intrusive 

polynomial chaos-based stochastic macromodeling of multiport systems”, in Proc. IEEE 

18th Workshop on Signal and Power Integrity, pp. 1-4, May 2014 

[11] D. Spina, D. De Jonghe, D. Deschrijver, G. Gielen, L. Knockaert, and T. Dhaene, 

“Stochastic macromodeling of nonlinear systems via polynomial-chaos expansion and 

transfer function trajectories”, IEEE Trans. Microwave Theory Tech, vol. 62, no. 7, pp. 

1454-1460, July 2014 

[12] P. Manfredi, D. Vande Ginste, D. De Zutter and F. Canavero, “Stochastic modeling 

of nonlinear circuits via SPICE-compatible spectral equivalents”, IEEE Transactions on 

Circuits and Systems, vol. 61, no. 7, pp. 2057-2065, July 2014 

[13] Z. Zhang, T. A. El-Moselhy, I. M. Elfadel and L. Daniel, “Stochastic testing method 

of transistor level uncertainty quantification based on generalized polynomial chaos”, 

IEEE Transactions on Computer Aided Design, vol. 32, no. 10, pp. 1533-1545, Oct. 2013 



 

[14] P. Manfredi, D. Vande Ginste, D. De Zutter and F. Canavero, “Generalized 

decoupled polynomial chaos for nonlinear circuits with many random parameters”, IEEE 

Microwave and Wireless Components Letters, vol. 25, no. 8, pp. 505-507, Aug. 2015 

[15] P. Manfredi and F. Canavero, “Efficient statistical simulation of microwave devices 

via stochastic testing-based circuit equivalents of nonlinear components”, IEEE 

Transactions on Microwave Theory and Techniques, vol. 63, no. 5, pp. 1502-1511, May 

2015 

[16] A. K. Prasad, A. Roy. "A novel dimension fusion based polynomial chaos approach 

for mixed aleatory-epistemic uncertainty quantification of carbon nanotube 

interconnects." IEEE International Symposium on Electromagnetic Compatibility & 

Signal/Power Integrity (EMCSI), 2017.  

[17] M. Ahadi, A. K. Prasad and S. Roy, “Hyperbolic polynomial chaos expansion 

(HPCE) and its application to statistical analysis of nonlinear circuits”, IEEE 20th 

Workshop on Signal and Power Integrity (SPI), pp. 1-4, May 2016 

[18] M. Ahadi and S. Roy, “Sparse linear regression (SPLINER) approach for efficient 

multidimensional uncertainty quantification of high-speed circuits”, IEEE Transactions 

on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1640-

1652, 2016 

[19] C. Chauviere, H. S. Jan, C. W. Lucas, “Efficient computation of RCS from scatterers 

of uncertain shapes”, IEEE   Transaction on Antennas and Propagation, 55.5 : 1437-1448, 

2007 

[20] B. Mutnury, M. Swaminathan, and J. P. Libous. "Macromodeling of nonlinear 

digital I/O drivers", IEEE Transactions on Advanced Packaging, vol. 29, no.1, pp. 102-

113, 2006. 

[21] D. C. Montgomery, Design and Analysis of Experiment, 8th ed. John Wiley, NY, 

2012. 

[22] C. Sungjun, J. Hejase, et al., "Package and Printed Circuit Board Design of a 19.2 

Gb/s Data Link for High-Performance Computing." In 67th IEEE Electronic Components 

and Technology Conference (ECTC), 2017 


