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Abstract 

 

This paper presents two new methods for dealing with skew in Printed Circuit Board (PCB) 

differential pairs.  In the first method, skew arising from fiber-weave effect is minimized by 

using a non-uniform differential pair.   It consists of a hybrid combination of edge-coupled 

and broadside-coupled differential geometries.  Further, the P- and N-traces are routed as 

“complementary twisted pairs” so that both traces see nearly the same environment.  

Simulations using a three dimensional electromagnetic field solver shows a significant 

reduction in fiber weave Skew.    

 

Differential insertion loss is strongly affected by skew which can result in complete fading 

at a precise frequency and its integral multiples.  When this frequency approaches the 

fundamental frequency of data, eye opening reduces leading to an increased Bit Error rate 

(BER).  If this undesirable effect of skew can be reduced, it will become possible to operate 

at high data rates even in the presence of substantial skew.  In this work, it is discovered 

that it is possible to reduce the effect of skew by the use of strongly coupled differential 

elements.   Two or more of these elements need to be inserted at certain locations along the 

link path.  They result in a significantly reduced fading. An exact analytical solution is 

derived for the differential insertion loss of an interconnect link comprising two tightly 

coupled sections.  Numerical results illustrate the performance improvement achievable.   
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1. Introduction 

 

When a serial link design satisfies certain requirements on its s-parameters and channel 

operating margin [1], error free data transmission is generally assured with high 

confidence. Differential-Insertion loss (IL), Return loss (RL), Insertion loss Deviation 

(ILD), and Insertion loss to cross talk ratio (ICR) or Integrated Crosstalk Noise (ICN) are 

the primary parameters that determine link performance (Figure 1).  All of these are 

affected by the skew in the differential pair comprising a P- and an N-interconnect. 

 

Skew in a differential pair can result from a number of sources [2].  Any asymmetry in the 

routing of the P- and N-traces will lead to skew.  Some of the sources are summarized in 

Table 1. They can be deterministic in most cases, or random due to manufacturing 

tolerances.  Most copper features can result in values of skew up to    ~1 picosecond.  

Physical pin length difference in connectors can result in larger values of skew.  The effect 

of all deterministic sources can be reduced using well known procedures.  Sources that are 

random in nature can also be dealt with through tighter manufacturing tolerances.  One 

source of skew in all fiber/resin composite printed circuit boards is due to their 

inhomogeneity and anisotropy.  

 
 

 
 

 
Figure 1:  Illustration of SERDES Eye opening dependence  



Fiber weave induced skew in a differential pair can be the most dominant mechanism and 

is the primary reason for pair-to-pair and board to board variations [3].  This subject has 

been well researched both theoretically as well as experimentally and many solutions exist 

[4-11].   

 

 

 

 
 
 
Table 1: Skew sources and their approximate impact 
 

 

 

Note that “skew” itself is not listed as a fundamental parameter of importance.  It is its 

effect on the differential s-parameters that is important.   First, skew results in common 

mode signal generation.  In a multi-board system with inadequate “ground integrity”, these 

high frequency common mode signals can excite resonances in the ground structure.  This 

will eventually lead to an increased ILD and ICR.  Secondly, skew results in fading at a 

precise frequency and its integral multiples.  If this frequency is less than or close to the 

Nyquist frequency, bits in the data pattern that have substantial harmonic content at this 

frequency will not be received and the Bit Error Rate (BER) will increase. 

 

In this work, we first present a new transmission line configuration for the reduction of 

fiber weave skew.  By recognizing that this is primarily due to a periodic non-uniformity 

in the dielectric constant of the substrate material, a new non-uniform transmission line 

geometry that counters this effect is proposed.  This type of transmission line has some 

interesting frequency dependent characteristics that can be exploited in creating tightly 

coupled lines. Secondly, it is observed that cascading multiple sections of tightly coupled 

lines is beneficial in reducing the null in the insertion loss.  Numerical results are illustrated 

using Ansys HFSS and Keysight ADS. 

 

 
 

  



2. A non-Uniform interconnect 

 

Uniform edge coupled differential transmission lines are the most commonly used forms 

of PCB interconnect. It can be very difficult or even impossible to maintain uniformity in 

a real PCB.  Routing in BGA and connector pin fields is inevitable and these present a non-

uniform environment.  Further, the PCB substrate itself presents a non-uniform 

environment in most cases.  Interestingly, this non-uniformity tends to be periodic in 

nature. By introducing an intentional periodic non-uniformity in a uniform interconnect, 

one is able to correct for undesirable effects arising from the environment.  This has been 

used earlier to reduce impedance variations and cross talk [12]. By a suitable modification, 

it can be designed to ensure that each P or N trace of a differential pair perceives the same 

environment.   

 

A broadside coupled differential pair geometry is known to require thicker dielectric 

substrates.  The edge-coupled differential pair has a primary advantage that it can be 

implemented with a reduced PCB thickness and layer count as shown in Figure 2.  The 

broadside coupled trace geometry can be modified by offsetting the two traces as shown.  

This reduces the coupling between traces and also reduces the layer thickness required for 

a given impedance.  While there is no apparent advantage in this configuration, it helps in 

the construction of a pseudo- twisted pair.   

 

To estimate the improvement in skew reduction feasible, we first consider the case of a 

straight broad-edge differential pair as shown in Figure 3.  The substrate has three single 

ply 1080 style weaves stacked with their weave patterns perfectly aligned to result in a 

maximum lateral variation in the dielectric constant.  The geometry has W = 4 mils, S = 10 

mils, D1=D3 = 4 mils, D2 = 3 mils, and T = 0.6 mil.  A dielectric constant value of 6 and 

loss tangent = 0.02 is assumed for the glass bundles.  A dielectric constant value of 2 and 

loss tangent = 0.01 is assumed for the resin.  The length of the transmission line is assumed 

to be 200 mils. 3D EM simulations were carried out using Ansys’ HFSS.  Computed s-

parameters are shown in Figure 3.  Skew in time domain as obtained from the phase 

difference of the single ended insertion loss is 18 pS/inch.  It can also be seen that this 

differential pair has very low Far End Cross Talk (FEXT) between its P and N traces.  

 

The non-uniform interconnect is constructed by sweeping a rectangle (trace cross-section) 

along a curve defined by the equation  

 

𝑥(𝑡) = 𝑡, 𝑎𝑛𝑑 𝑦(𝑡) =  (
𝑆+𝑊

2
) (𝐶𝑜𝑠 (

𝜋𝑡

10
) − 1) , 0 ≤ 𝑡 ≤  200 𝑚𝑖𝑙𝑠                         (1) 

 

The N-Trace on a different layer is a mirror image of the P-trace as shown in Figure 4.  All 

other physical parameters are the same as the geometry of Figure 3.  Computed skew in 

this case is less than 0.03pS/inch.  An important observation here is that the FEXT value 

increases substantially with frequency.   

 



It is easy to see that by controlling the periodicity of the line, the number of overlapping 

twists can be made to vary.  Increasing the number of twists per inch will decrease the P-

N skew and will also increase the cross talk between the two lines.   

 

 

 

           
 

 

 

 
 

                      

 

 
 

Figure 2: Differential transmission line geometries (All dimensions are in mils to scale)  



              

                  

                    
 

Figure 3: Reference straight 200 mils long broad-edge line geometry  



 
 

          
          

       
 

Figure 4: Non-uniform trace geometry on a 200 mils long substrate 



3. Effect of skew on the Differential Insertion Loss 

 

The development in reference [11] is extended in this work to include coupling and 

cascaded transmission line sections.   

 

 
 

Figure 5: Illustration of a 4 port network and the Port numbering convention used 

 

 

For a four port network, the normalized incident waves   𝑎   and reflected waves   𝑏   are 

related by the normalized scattering matrix   [𝑆]  as  

 

 

[

𝑏1

𝑏2

𝑏3

𝑏4

] =  [

𝑆11 𝑆12 𝑆13 𝑆14

𝑆21 𝑆22 𝑆23 𝑆24

𝑆31 𝑆32 𝑆33 𝑆34

𝑆41 𝑆42 𝑆43 𝑆44

] [

𝑎1

𝑎2

𝑎3

𝑎4

] = [𝑆] [

𝑎1

𝑎2

𝑎3

𝑎4

]                                                   (2) 

 

 

S-parameter matrices are not well suited for cascading and therefore chain matrices or T-

parameter matrices become necessary.  A new T-matrix definition developed in [13] is 

utilized here. For a 4 port network, it has the form 

 

[

𝑏1

𝑎1

𝑏2

𝑎2

] =  [

𝑇11 𝑇12 𝑇13 𝑇14

𝑇21 𝑇22 𝑇23 𝑇24

𝑇31 𝑇32 𝑇33 𝑇34

𝑇41 𝑇42 𝑇43 𝑇44

] [

𝑎3

𝑏3

𝑎4

𝑏4

] =  [𝑇] [

𝑎3

𝑏3

𝑎4

𝑏4

]                                                 (3)                                                              

 

For a cascade connection of 2 four port networks A and B, the s-parameters are obtained 

from the equation 

 

 

[𝑆]𝐴_𝑐𝑎𝑠𝑐𝑎𝑑𝑒_𝐵 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑇_𝑡𝑜_𝑆 [𝑇]𝐴[𝑇]𝐵                           (4)                                                       

 

 

Equations for the transformation of S to T parameters and vice versa can be found in 

reference [13].  

 



 

The differential Insertion loss can then be obtained using  

 

 

𝑆𝐷𝐷12 = 0.5 (𝑆13 + 𝑆24 − 𝑆14 − 𝑆23)                                                                             (5) 

 

 

To model skew alone, we will assume a perfectly matched, reciprocal and uncoupled 4 port 

network comprising two 2-port networks that have a phase difference ∆𝜃 and an identical 

attenuation 𝐴.  

 

A skew value of ∆𝑡 between the single ended ports 1-3 and 2-4 will translate into a phase 

difference of ∆𝜃 which are related by 

 

 

∆𝜃 = 2𝜋𝑓∆𝑡                                                                                                          (6) 

 

 

 

Where 𝑓 is the frequency 

 

 

 

 
 

Figure 6:  Symbolic representation of an uncoupled diff pair with skew 

 

 

 

In this case: 

 

𝑆11  =  𝑆22 =  𝑆33 = 𝑆44 = 0 

 

𝑆12  =  𝑆21 =  𝑆34 = 𝑆43 = 0 

 

𝑆14  =  𝑆23 =  𝑆41 = 𝑆32 = 0 

 

𝑆13 = 𝑆31 =  𝐴𝑒𝑗(𝜃+ 
∆𝜃

2
)    

𝑆24 = 𝑆42 =  𝐴𝑒𝑗(𝜃− 
∆𝜃

2
)    

 

 

Its T parameter matrix is  



 

[𝑇𝑠𝑘𝑒𝑤𝑒𝑑] = 

[
 
 
 
 
 𝐴𝑒𝑗(𝜃+ 

∆𝜃

2
) 0 0 0

0 𝐴𝑒𝑗(𝜃+ 
∆𝜃

2
) 0 0

0 0 𝑒−𝑗(𝜃+ 
∆𝜃

2
) 𝐴⁄ 0

0 0 0 𝑒−𝑗(𝜃+ 
∆𝜃

2
) 𝐴⁄ ]

 
 
 
 
 

              (7)                                                         

 

 

Next, the case of a coupled differential pair is considered.   

 

 

 
 

Figure 7:  Symbolic representation of a coupled diff pair without skew 

 

 

In this case, let 

 

𝑆11  =  𝑆22 =  𝑆33 = 𝑆44 = 𝑅 

 

𝑆12  =  𝑆21 =  𝑆34 = 𝑆43 = 𝑁 

 

𝑆14  =  𝑆23 =  𝑆41 = 𝑆32 = 𝐹 

 

𝑆13  =  𝑆24 =  𝑆31 = 𝑆42 = 𝐼 

 

 

[𝑇𝑐𝑜𝑢𝑝𝑙𝑒𝑑] =   

 

 

1

(𝐼2− 𝐹2)
[

𝐼 (𝐼2 − 𝐹2 − 𝑅2 − 𝑁2) + 2𝑅𝐹𝑁         𝐹 (𝐼2 − 𝐹2 + 𝑅2 + 𝑁2) − 2𝑁𝑅𝐼     𝑅𝐼 − 𝑁𝐹     𝑁𝐼 − 𝑅𝐹

𝐹 (𝐼2 − 𝐹2 + 𝑅2 + 𝑁2) − 2𝑁𝑅𝐼        𝐼 (𝐼2 − 𝐹2 − 𝑅2 − 𝑁2) + 2𝑅𝐹𝑁    𝑁𝐼 − 𝑅𝐹      𝑅𝐼 − 𝑁𝐹
𝑁𝐹 − 𝑅𝐼 𝑅𝐹 − 𝑁𝐼 𝐼 −𝐹
𝑅𝐹 − 𝑁𝐼 𝑁𝐹 − 𝑅𝐼 −𝐹 𝐼

]      

                   

 

                  (8)                                                   

 

Using the geometries in Figures 6 and 7, one can model arbitrary values of skew and 

coupling.  

 

For example, for a coupled network without skew, its s-parameters can be obtained from 

 



[𝑆] = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑇_𝑡𝑜_𝑆 {[𝑇]𝑐𝑜𝑢𝑝𝑙𝑒𝑑}                                                                     (9) 

 

 

The differential insertion loss in this case reduces to  

 

 
|𝑆𝐷𝐷12| = |𝐼 − 𝐹|                                                                                               (10) 

 

 

For a skewed network without coupling, the s-parameters can be obtained from  

 

 

[𝑆] = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑇_𝑡𝑜_𝑆 {[𝑇]𝑠𝑘𝑒𝑤𝑒𝑑}                                                                   (11) 

 

 

The differential insertion loss in this case reduces to  

 

 

|𝑆𝐷𝐷12| = 𝐴 |𝐶𝑜𝑠 (
∆𝜃

2
)|                                                                                     (12)   

 

 

Which can be seen to be zero for values of  (
∆𝜃

2
) that are integral multiples of (

𝜋

2
).  This 

will occur at all frequencies where  

 

 

𝑓 = (
2𝑛−1

2∆𝑡
) , 𝑛 ≥ 1                                                                                            (13) 

 

 

For a skewed network with coupling, the s-parameters can be obtained from 

 

 

[𝑆] = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑇_𝑡𝑜_𝑆 {[𝑇]𝑠𝑘𝑒𝑤𝑒𝑑[𝑇]𝑐𝑜𝑢𝑝𝑙𝑒𝑑}                                                  (14) 

 

 

The differential insertion loss in this case reduces to  

 

 

|𝑆𝐷𝐷12| = 𝐴 |(𝐼 − 𝐹) 𝐶𝑜𝑠 (
∆𝜃

2
)|                                                                        (15) 

 

 

It is interesting to see that the skew dependent zero in the differential insertion loss is still 

present although the slope in its neighborhood is affected by 𝐹.  This implies that strong 

coupling alone will not eliminate the null in differential insertion loss arising from skew. 

 



Let us now assume that there are two cascaded networks with skew.  We will also assume 

that they are identical. The s-parameters can be obtained from the following equation. 

 

 

[𝑆] = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑇_𝑡𝑜_𝑆 {[𝑇]𝑠𝑘𝑒𝑤𝑒𝑑[𝑇]𝑐𝑜𝑢𝑝𝑙𝑒𝑑[𝑇]𝑠𝑘𝑒𝑤𝑒𝑑[𝑇]𝑐𝑜𝑢𝑝𝑙𝑒𝑑}                  (16) 

 

 

Equation (16) leads to a large number of algebraic terms.  If we neglect higher powers of 

the s-parameters one obtains  

 

 

|𝑆𝐷𝐷12| ≈ 𝐴2 |(𝐼 − 𝐹) [𝐼 𝐶𝑜𝑠(∆𝜃) − 𝐹]|                                                            (17) 

 

 

It is interesting to see from Equation 17 that the FEXT term 𝐹 can help in eliminating or 

displacing the null in the differential insertion loss. It is also clear that |𝐹| 𝑚𝑢𝑠𝑡 𝑏𝑒 > 0  , 

otherwise Equation 17 will reduce to Equation 15. Mathematically, Equation 17 can still 

become zero for certain combinations of values of  𝐼, 𝐹 and skew. However, it is not a 

direct function of skew like Equation 15. It turns out that two or more sections of tightly 

coupled lines are needed to benefit from this advantage.  Further, they need to be placed at 

locations that is determined numerically.  Fortunately, the sensitivity is not very high 

providing flexibility in adapting to many real situations. 

 

 

4. Differential Interconnects with large FEXT 

 

From section 3, it can be seen that coupled interconnects that have large values of FEXT 

are needed.  While many such geometries can be constructed, the following two are used 

in the illustration. 

 

 

4.1  Vias 

 

 

It is known that long vias such as those used in backplane connectors have substantial 

amounts of forward coupling.  In the illustration, a differential via in a 20 layer backplane 

is considered.  The via drill diameter is 17 mils and the pad diameter is 30 mils. The spacing 

between P and N vias is  60 mils, and their spacing to neighboring ground vias is 40 mils. 

Computed s-parameters are shown in Figure 8.  It can be seen that considerable amount of 

forward coupling is obtained.  From the values of single ended and differential insertion 

loss, FEXT can be seen to help reduce the differential insertion loss.   

 

 

 

 



 

 

 

 

                 
 

 

 
 

 

 

Figure 8: Via geometry and computed s-parameters 

 

 

 

 

 

 

 

 

 



4.2  Non-Uniform traces 

 

 

The non-uniform trace configuration introduced earlier can be designed to yield very large 

values of FEXT.  This structure essentially works like a “coupler” [14].   To understand 

wave propagation we first consider the case of a straight broad-edge coupled trace in a 

homogeneous substrate (Figure 10).  In this illustration, W = 4 mils, S = 25 mils, T = 0.6 

mils, D1= D3 = 4 mils, D2= 3 mils, 𝜀𝑟= 3.5, tan 𝛿 = 0.008, trace length = 500 mils.  The 

total electric field distribution on a plane in between the two traces is also shown for both 

modes of excitation.  At 25 GHz, the line is 2 guide wavelengths long and 4 maxima in the 

electric field can be seen for both modes of excitation. In this case, it is obvious that the 

velocities of propagation of both modes, odd (or differential) and even (or common) are 

the same.  

 

 
 

    
 

Figure 10: Straight broad-edge trace characteristics  

 



 

The non-uniform pair in the same stackup is constructed using the equation 

 

𝑥(𝑡) = 𝑡, 𝑦(𝑡) =  (
𝑆+𝑊

2
)𝐶𝑜𝑠 (

𝜋𝑡

25
) , 0 ≤ 𝑡 ≤  500 𝑚𝑖𝑙𝑠                                        (18) 

 

Field distribution plots in Figure 11 clearly show a difference in propagation velocities of 

the odd and the even modes.  As a result, the structure behaves as a coupler with maximum 

coupling occuring at frequency that is inversely proportional to the difference in velocities.    

           
 

 

               
 

Figure 11: Non-uniform trace characteristics  



5. Numerical illustration and Conclusion 

 

The following example is used to illustrate the benefit obtainable by inserting tightly 

coupled sections into an interconnect path that can be affected by fiber weave skew. The 

modeling method of reference [10] is used.  This consists of using short sections of 

transmission lines with an ideal delay element to represent fiber weave skew.  

 

The reference example (Figure 12, Case A) is a 9 inch long single ended stripline (W = 

4.35 mils, T = 0.6 mils, D1= D3 = 4.5 mils,  𝜀𝑟= 3.5, tan 𝛿 = 0.008.  It is implemented as a 

cascade connection of 9 one-inch long sections.  The skewed case B is simulated by the 

inclusion of a 3.47 pS of delay in one the lines as shown.  The number is chosen to result 

in a null at 16 GHz.   

 

Computed results are shown in Figure 13.  The well-known effect of skew which produces 

a null at 16 GHz (Equation 13) is apparent.  A plot of the differential to common mode 

transfer s-parameter   𝑆𝐶𝐷12, is also shown.  It can be seen that common mode conversion 

will be substantial where the differential mode has a null. 

 

Cases C and D in Figure 14 illustrate use of tightly coupled sections.  Their number and 

location was determined by trial and error.  Computed differential insertion loss is shown 

in Figure 15 where all four results are super-imposed.  It can be seen that in both cases C 

and D the null at 16 GHz caused by skew is no longer present.  With case D, the attenuation 

at 16 GHz is only worse than that of case A by less than 3 dB.  The differential to common 

mode conversion s-parameter results in Figure 16 also show an improvement.  

 

To get a better understanding of how this is achieved, single ended s-parameters of both 

cases are plotted in Figures 17-18.  In the case of the via, it is clear that 𝑆24 is attenuated 

substantially at 16 GHz as compared to 𝑆13, and consequently the creation of a null is 

averted. Case D is somewhat more complicated.  Here the amplitudes of all four 

components of the differential insertion loss (Equation 5) are approximately the same.  It 

is their phases that prevent a null formation.   

 

Finally, the effect of these interconnects on the eye diagram is illustrated by using them in 

a 32 Gbps link.  The driver transmits a maximum amplitude signal with some pre- and 

post-emphasis and the receiver uses a 5-tap adaptive DFE.  Computed Eye diagrams using 

Keysoft’ ADS and interconnects of cases A, C and D are shown in Figure 19.  Eye closure 

results with Case B and is not shown.   It can be seen that the insertion of tightly coupled 

sections does not have any significant effect on eye opening other than what is expected 

from the increased attenuation as compared to the reference case A.   

 

The non-uniform geometry of Section 4.1 would be useful in cost, layer count and 

thickness constrained designs.  Flexible PCBs would be one area.  Use of tightly coupled 

elements is beneficial in multi-board interconnects and can prevent accumulation of fiber 

weave skew.  Designing using these elements requires numerical simulation and 

optimization.   

 



 
 

 

Figure 12: Cascaded transmission line sections used in the illustration.    

 

 

 
Figure 13: Computed Differential insertion loss of cases A and B 



 

 

 

 

 
 

 

 

Figure 14:  Illustration of cases C and D    



 
 

Figure 15:  Comparison of Differential Insertion Loss    

 

 

 
Figure 16:  Comparison of Differential to Common mode Insertion Loss    



 

 

 
Figure 17: S-parameters of case C 

 

 

 

 
 

Figure 18: S-parameters of case D 



 

 

 

 

 
 

 
 

 
 

Figure 19: 32 Gbps Eye diagrams of cases A, C and D 
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