

DesignCon 2019

Lowest-cost communication with light
from an IoT device to smartphone

Prof. Laszlo Arato, NTB Buchs
laszlo.arato@ntb.ch, +41 81 755 3377

Prof. Rolf Grun, NTB Buchs
rolf.grun@ntb.ch

Prof. Dr. Carlo Bach, NTB Buchs
carlo.bach@ntb.ch

Dr. Alexander Schoech, NTB Buchs
alexander.schoech@ntb.ch

Christoph Capiaghi, NTB Buchs
christoph.capiaghi@ntb.ch

Simon Fink, NTB Buchs
Simon.fink@ntb.ch

Abstract
While fully integrated smart sensors and devices are getting smaller and cheaper, the cost
of communicating their data grows more significant. Conventional links like USB,
WLAN, Bluetooth, ZigBee, and others are too expensive, when selling price shall drop
below $ 5.-.

Implemented for a medication transport temperature-tracking device of a Swiss company,
we demonstrate the unidirectional data transfer of 84 Bytes of Data from the LTI device
(Long Term Indicator) to almost any smartphone in less than 10 seconds at almost no
additional cost using only three LEDs.

Author(s) Biography

Laszlo Arato is Professor for Electronics, Signal Transmission- and Processing at the
Interstate University of Applied Sciences of Technology NTB in Buchs [1]. His research
interests include smart sensors and their implementation on FPGAs and ASICs. He
received his engineering degree at the ETH in Zurich in 1990. He worked at Schmid
Telecom AG in Zurich, Conexant Systems Inc. in Red Bank, NJ and Irvine, CA, as well
as Qualcomm Inc. in San Diego before switching to academics in 2006 at the FHNW.

Rolf Grun is Professor for Computer Science at the Interstate University of Applied
Sciences of Technology NTB in Buchs. He received his engineering degree at the ETH in
Zurich in 1994. From 1994 - 1999 he worked for Telekurs AG Zurich, where he
cryptographically protected the Swiss ATM and EFT-POS System. From 1999 to 2004
he was lecturer at the University of Applied Sciences HTW in Chur.

Dr. Carlo Bach is Professor for Computer science at the Interstate University of Applied
Sciences of Technology NTB, Buchs. After his Ph.D. at the ETH Zurich he worked for
eight years as project lead for software before becoming professor at the NTB in 1999.
He currently heads the Machine Vision group and works on challenges of automated
visual inspection of difficult materials.

Dr. Alexander Schöch received his B.Sc. in computer engineering and his M.Sc. in
industrial engineering from the NTB on crypto analysis with FPGAs. He received his
Ph.D. degree from the University of Padua for metrology at elevated temperatures. He is
a research associate at the Institute for Production Metrology and Optics (PWO) of NTB.

Christoph Capiaghi completed his B.Sc. and M.Sc. at the NTB, and has also worked as
hardware designer for IMT Medical in Buchs for several years before joining the NTB
again for this project.

Simon Fink received his B.Sc. in 2016 and is currently continuing his M.Sc. studies
while working part-time at the NTB at the institute for Engineering Informatics.

1. Introduction
A significant portion of pharmaceuticals are rather sensitive to heat or cold. From
fabrication to usage they need to be stored within a product specific temperature band, it
must not be kept below a certain temperature or above a certain other temperature for
extended period, or it will decay and become not only useless but also potentially
harmful. This applies to storage, handling and transportation.

Figure 1: A Multi-Level PDF Indicator shipped with a collection of pharmaceutics.

There are many pharmaceuticals in need of a continuous cool chain, as they would
rapidly lose their benefit even at room temperature. This is not always easy to guarantee,
and if unchecked transport companies would likely cut corners and turn off expensive
cooling – which is generally difficult to prove, and even more so in poorer, hot and large
countries.

The industry partner for our research is for many years a supplier of LTI (Long Term
Indicators) to monitor temperature-sensitive medication shipments. Their typical product
is the size of an old cell phone and connects with USB to any PC workstation for data-
readout at the end of the shipment.

Figure 2: LTI Long-Term Indicators of our industry partner [2]

«Libero C» LTI devices cost about $ 30.- and are thus only viable to track large crates.

To track individual boxes, the company decided to invest into a new device has the size
of a 3mm thick postal stamp, costs less than $ 5.- and works up to 5 years.

Figure 3: The new, much smaller LTI is the size of a postal stamp [3]

Pressing the single button, the user sees on a green, yellow or red LED, indicating the
temperature stability of the medication. That “go/no-go” information is good enough for
most cases. However, especially if the drugs are no longer safe to use, one would like to
know what went wrong – when and where was the box exposed to degradation … and for
how long.

This is when a data download is needed, somewhere in the world at a doctor’s office.

Big challenge for the new device was this data communication with the end clients,
where any current technology like USB, Bluetooth, WLAN or ZigBee is far too
expensive to include and too power-hungry for the integrated battery.

2. Hardware Facts
The product was to consist of a single mixed-signal ASIC chip, a button, 3 LEDs, a
break-off latch to trigger the start of recording when removed together with the self-
adhesive tape cover when glued to the box of pharmaceuticals. No additional elements
were allowed to reduce costs.

The size and life expectation dictated the battery to be a 3.0V lithium-ion button cell [4]
battery with a maximum current of 3.0 mA. Everything needed to fit into this voltage and
current budget. This is barely sufficient to power one LED, but not three.

The receiver must be a regular smartphone without any hardware modifications. We used
the Samsung S7 as reference for Android systems, and iPhone 8 for Apple, with the
intention to migrate the code and receiver support later for a wide range of cell phones.

3. LED Signaling
3.1 Brightness Signaling
One way to signal different values with an LED is to use pulse-width modulation (PWM)
to control the LED brightness, and use this to indicate different bit values. A PWM
frequency of 250kHz proved to be slow enough to turn the LEDs completely on and off
during each cycle, but was fast enough to ensure that the emitted light will be integrated
across each pixel during regular movie recording settings on the smartphone camera.
As a 10% duty cycle has the LED just being active during 10% of the time compared to a
100% activity, the emitted amount of light is also effectively 10 times larger during 100%
activity than during 10% activity.

Figure 4: Recognized brightness levels for different LED colors

It was somewhat surprising to find, that this is not reflected in the camera observed
brightness values! The three diagrams on the right show the LED activation in steps of
256 PWM steps from 0 = never activated to 255 = 100% activated.
The vertical starting value around 120 is due to additional background light, while all
values are computed across all significant pixels for a particular LED.

As we found out during our investigation, this non-linearity is not caused by the smart-
phone camera sensitivity itself, but due to a saturation in the center of the recorded LED.
The graphics on the right shows the enlarged 40 by 40 pixel area of the recorded LED
and the per-pixel brightness values.

The diagram on the next page shows a 10% LED illumination with saturated pixel
marked bright yellow. For higher PWM values, the number of saturated pixels increases
significantly, making the brightness distinctions very difficult. There is simply no
additional information, on how much a saturated pixel is saturated. Different approaches
to give saturated pixels a non-linear value depending on the number of saturated pixels
proved to be futile and lead not to a reliable algorithm. To decrease camera sensitivity to
avoid saturated pixels was also unsuccessful, as it was making the camera image too dark
for proper aiming while still not resulting in a usable linear reception.

Figure 5: Camera image of an LED with pixel-values and saturation at only 10% PWM modulation

A much more successful approach was to pre-distort the PWM modulation to create a
linear line of brightness values at the receiver. Using only 9 steps of brightness, the
values of 0 through 8 were exponentially assigned PWM cycles to result in an optimal
decoding distance between all levels on the receiver side.
The table and diagram show for the lowest step (0) no LED activation, and full LED
activation for the highest step (8).

Figure 6: LED PWM cycles for 9 brightness levels

3.2 Rolling Shutter Usage
A completely different approach to detect PWM width on the receiving side is the usage
of the rolling shutter effect. CMOS cameras typically read and digitize image information
not simultaneously for the entire image, but line-by-line. This is of course primarily an
economic aspect of each camera chip, where it only needs 2592 analog-digital converters
implemented in parallel with the line-by-line method rather than 5 million for a 5-
megapixel imager.
The result, among others, is the distortion of any fast moving object in the picture due to
the sampling delay, typically between vertical lines [5].

Figure 7: Image of fast-moving propeller blades exposing the rolling shutter effect by Jason Mullins

Configuring the camera to very high sensitivity (ASA) and short exposure times,
combined with a very close and intentionally blurred video recording will result in
pictures as in Figure 8. Recorded at a distance of about 10mm, the three LEDs form each
a rather big and blurred spot with a width around 100 pixel.

Figure 8: PWM-cycles captured using rolling-shutter effect

With the rolling shutter moving vertically from top to bottom, we can identify at the
middle added grey horizontal line the common PWM start for all three LEDs. The
distance to the bottom added horizontal line is proportional to the time of the full 255
PWM cycles, after which the PWM modulation restarts. Measuring the distance of the
light and dark vertical sections for each LED will give a good level detection – and even
more so when using a linear and not exponentially distributed PWM brightness levels.

During these very short but vertically distributed exposure times, the PWM modulation
of effectively 83 kHz results in active and not-active zones per LED. As the PWM
modulation for the LEDs starts simultaneously with “on” for all three LEDs, they show
up starting at the same horizontal line independent of the real physical position of the
LED. The longer the active side of each LED’s PWM modulation is, the wider its image
stripe becomes. The distance between two “starting” sides of the stripes is equal to 255
PWM steps. Knowing this it is easy to measure image-by-image the PWM active cycle
per LED and its step value.

Using the levels as defined in Figure 6, the symbol in Figure 8 translates to level 5 for the
green LED (61 of 255 PWM cycles), level 7 for the red LED (150 of 255 PWM cycles),
and level 4 for the yellow LED (34 of 255 PWM cycles).
With time as the vertical axis, and no longer only the LED position, there are strange
effects to observe: The smartphone in Figure 8 is not perfectly aligned with the LTI
device, so the line of LEDs is somewhat tilted counterclockwise and the yellow LED dot
higher than the red one, and the green LED dot lower.
At the time of the first PWM modulation start in the picture, the blurred dot of the yellow
LED is visible, but not yet the red and green LED dots. By the time the green LED dot
would become visible, the PWM modulation for the green LED is already turned off
again, so we do not see anything in the upper half of the green LED spot position. The
red PWM modulation is much longer active, and so it becomes visible, as the LED is
active at the time of the horizontal shutter moving downwards.
At the time of the third start of PWM modulation (bottom grey line), the green and red
LEDs are still visible, while the spot of the yellow LED is also active but higher up and
not where the shutter is capturing the photons – so it remains dark at the bottom.

The “rolling shutter” method would be great for high data rate detection – were there not
two distinct drawbacks:

- This particular usage was never intended by the camera and camera-driver designers,

and so it is not really supported as a feature.

- Sony and other image sensor developers see the rolling shutter effect as something
bad and unwanted, and are working hard to eliminate it. It can be expected to become
more and more difficult to expose in future smartphones.

4. Symbols and Symbol Rate

Using nine brightness levels per LED enables us to have a unique “off” value (value 0),
as well as eight brightness levels to encode 3 bit of information per LED. With three
LEDs, this results in 8 bits and an additional one-bit parity information. Just like in any
other modulation, we call this arrangement a “symbol”.

We also implemented a transmission mode with only five instead of nine brightness
levels, resulting in a much larger brightness distance between the individual levels and
thus a better “signal-to-noise” ratio and far more robust detection. However, this also
results in only 2 bits encoding per LED, and thus only six data bits transmitted per
symbol. To simplify the transmitting finite state machine we implemented two symbols
per data byte and parity, which is then taking almost twice as long as 9-levels per LED
transmission. This mode is only used as a “fallback” for a second data transmission if the
first one was unsuccessful.

As the sender with the LEDs is not synchronized to the receiver (CMOS smartphone
camera), we need to send the symbols at a slower rate than the recording camera. All
globally available smartphones support a video capture rate of 30 frames per second,
derived from the old NTSC television standard – which is most of the time effectively
29.97 frames per second. As we observed, some smartphones are not even guaranteeing
this frame rate, but record as a “best effort” frame rate.
To stay on the safe side, and as there is no information from the used smartphone to the
transmitting LTI device, we selected a transmission symbol rate of only 15 Hz. This will
capture most symbols twice, but it guarantees that every sent symbol is captured at least
once correctly for detection.

To select the correct images for data retrieval, and ignore duplicates is supported by the
design of the signaling protocol and its rigid frame structure, together with
synchronization symbols which can be unequivocally distinguished from payload data.

Instead of using a training sequence of known brightness levels to adjust the receiver the
decision was to implement a simple 8-bit data scrambler to force the transmitted data to
look random and hit all LED brightness levels about equally often. “Block-ID” and
synchronization symbols are excluded from scrambling.

Before decoding the data, the receiver is then first assembling a list of all received
brightness levels for each LED (excluding block-ID and synchronization symbols), and is
grouping the levels per LED into eight levels with the k-means clustering algorithm. With
these recognized levels, the payload is extracted from the symbols and restored to its
original content through a second application of the scrambling sequence.

5. Parity information and Gray code
When distributing eight data bits evenly on three LEDs we get an additional 9th spare bit,
which is used as parity information and first level model-based error correction. The
parity bit is a simple even-extension of the payload data byte by XOR-ing all 8 bits
together [6]. I can identify a single-bit error, but not any even number of bit-changes.

The most likely error case is a misinterpretation of the received brightness in one of the
three LEDs, when it is decoded as either one level too low or one level too high.
However, this will only work, if adjacent brightness levels always differ from each other
by exactly one bit – if they differ by two bits a misinterpretation will not cause a parity
error. Figure 9 shows the nine brightness levels. The lowest level (0) is not used for
payload data but exclusively for “block-ID” and synchronization symbols. The other
eight levels 1 through 8 have each a 3-bit data segment associated. From bottom to top,
level 0 through 8 the applied Gray coding [7] is visible, where from any level to any other
level only one bit changes.

Figure 9: Gray code mapping of data to levels

The most likely error case is the misinterpretation of the brightness level of a single LED,
while the other two LEDs are decoded correctly. This will then result in a parity error, at
which time the model based first level of error correction can try to correct the mistake:

- If one of the three decoded LED brightness levels is particularly distant from the

average brightness level value as derived with the k-means clustering algorithm, it is
most likely the culprit and belongs to a different level

- If the green LED was decoded as brightness level 0, 1 or 2, it is most likely the one
causing the error. This is a model based error correction, as countless experiments
and testing have shown the green LED at the lower levels to be the most difficult one
to detect – independent of the actual LED manufacturer!

6. PWM modulation of the LEDs
6.1 Round-robin activation
Once again, this proved to be a bit more challenging than expected. As mentioned in the
beginning, the battery current output is typically limited to 3mA, which is reduced further
near the battery end-of-life to less than 2 mA.
Chip LEDs are typically optimized for high output, and not for lowest power
consumption. Even the smallest like ROHM PICOLED series [8] have a forward current
IF of 1mA. This means that there must never be more than one LED active at any point in
time, or the battery voltage could drop below the chip minimal voltage causing brown-out
effects.

Our solution is to use a round-robin activation scheme, where the LEDs are only active
one after the other, if indicated by their individual PWM modulation duration.

Figure 10: Round-robin LED activity simulation

Figure 10 shows the ModelSim waveforms for the LEDs in a typical PWM signaling.
“LG” stands for the green LED, which in this example has only 2 PWM cycles, while
“LR” for the red LED has 6 PWM cycles and “LY” for the yellow LED has 32. The
PWM cycles start together for all 3 LEDs, and turning off individually when their
duration is over. The PWM modulation frequency of 250 kHz is thus effectively only
83.3 kHz per LED, and the maximum LED brightness is even in full (255 of 255 cycles)
activation only 1/3 of what it could be.

By using a black area around the LED openings on the device package, we found that this
reduced illumination of the LEDs is still sufficient except for the usage in bright sunlight.
As the product is typically used in offices and storage facilities, we consider this a
workable concession to the small and long-lasting battery.

6.2 Symbol-change to PWM synchronization
Another important issue was to synchronize symbol-changes to the PWM modulation.
Otherwise a symbol change for example of the red LED from a 5 cycle modulation to a
64 cycle modulation can have a “restart” effect, if the symbol-change takes place for
example when the PWM counter is at 30. If not synchronized, the red LED will in this
case turn on again at PWM cycle 30 and be active all through cycle 64. This
synchronization needed in our case another 12 Flip-Flops, but proved significant for
“rolling-shutter” based LED decoding.

7. Design of the signaling protocol
7.1 Symbol coding
Based on the 9-level brightness per LED and thus 8 data bits per symbol there are 84
symbols needed to transmit the LTI payload data. A rigid frame structure with additional
“block-ID” and synchronization symbols ensures that payload data is correctly identified.

To make them unique and clearly distinguishable from payload data, “Block-ID” and
synchronization symbols contain the otherwise never used level 0.

Figure 11: From left to right: block-ID, data- and synchronization symbols

Figure 11 shows left the “Block-ID” symbol. While the green and yellow LEDs are
completely turned off, the red LED can have level 1, 3, 5 or 7 identifying it as “Block-ID
1” through “Block-ID 4”. This identification permits an “out-of-sequence” payload
decoding and assembly, and thus 4 possible entry points to start receiving and decoding
the data transmission. The red spot is marked with color shading to indicate that it can
hold different values.

Figure 11 shows in the middle a regular payload symbol, where each LED can have any
brightness levels 1 through 8. The rightmost symbol shows the synchronization symbol
where no LED is illuminated (all LEDs at level 0).

7.2 Framing structure
Figure 12 lists the entire framing structure with its 96 symbols to transmit 84 bytes of
payload data and checksum together with the “Block-ID” and synchronization symbols.

Transmission starts with “Block-ID 1”, marking this as the real beginning of the frame.
This is then followed by 23 symbols as the “data block 1”. This is repeated 4 times for a
total of 96 symbols including 84 bytes of payload data and checksum. After that, the
whole frame starts over again, repeating the frame for as long as it is configured. At a
symbol rate of 15 Hz and 96 symbols, one frame lasts for 6.4 seconds.

With a “simple” receiver logic, the reception has to start with a “Block-ID” and has thus
to wait in case of just missing a “Block-ID” for 23 symbols, which translates to another
1.53 seconds. With this, maximum recording time for the smartphone receiver must be 8
seconds.

Figure 12: Framing structure with 4 data blocks

However, with a smarter receiver logic reception can start with any “Block-ID” or
synchronization frame, which reduces receiver recording time to only 7 seconds. We
have found that any successful decoding must start with a “Block-ID” or synchronization
symbol, as this is really needed to identify the correct video frames to use for decoding.

Transmission with repetition of the frames can last as long as it is needed – but again
there is no feedback from the receiver when it is done. We have found that one minute is
typically sufficient to press the start button, grab the smartphone with the App already
running, aim at the LEDs and record the blinking sequence for 8 seconds.

7.3 Receiver challenges using smartphones
Estimating the workload of the smartphone processor and the available real-time
resources, we expected the main processor of a smartphone to perform the video
compression during recording. If we therefore use image signal processing instead
compressing and storing a video stream, the processor workload should be lower than
during regular video recording.

This proved to be wrong. As we found, almost all modern smartphones are using CMOS
camera sensors from a single manufacturer and technology: Sony Exmor RS [9].
Exmor RS is a stacked chip technology, with a back-illuminated CMOS image sensor on
the first layer, and an added (stacked) second layer chip for advanced functionality [10].
Part of this functionality is the real-time video compression, which is offloading work
from the main smartphone processor. This is actually bad news for this type of
application, since the raw image data is no longer directly available on the processor, but
takes additional processing power to extract the image-by-image data from the captured
video stream.

Another finding was a widely used but little know technique called “Variable Frame
Rate” VFR. This is an inherent part of modern video compression formats like MPEG-4
[11], where images are no longer recorded at a constant rate, but rather at “best effort”
depending on the video compression needs and sometimes the configured constant output
data rate. While this is compensated on the playback devices using individual time-
stamps per frames, it poses an additional obstacle to video data processing for
communication.
On a side note, this problem can be observed when regular video editing tools specialized
for constant frame rate processing are fed with smartphone videos. Forcing the variable-
frame-rate video stream image-by-image onto a second video stream (picture-in-picture
or smooth transitions) will always cause synchronization faults between the video and
audio stream [12].

To make the transmission more robust against fluctuations in the recorded frame rate of
the smartphone, every set of 7 data bytes is framed to the left and right by either a
“Block-ID” or synchronization symbol. As a result, the decoding is still correct for a set
of 8 symbols
(7 data- and 1 synchronization symbols) if the camera records 15 or 17 images instead of
the expected 16. This translates into a variation of +/- 6 percent of the captured frame
rate. As we observed on different smartphone cameras, the overall frame rate is stable,
but there are often significant short-term variations in the video recordings.

8 Checksum and Forward Error Correction
8.1 Reed-Solomon checksum generation on the transmitter side
In order to check data integrity and provide some error correction capability, we
implemented the computation of 4 Reed Solomon syndromes over the 80 bytes of
payload data.
This enables us to either correct up to two errors at any two locations, or up to four errors
with known location. Based on the symbol-wise parity bit we do have a possible location
information, which could be used to directly correct the errors or just feed them into the
Reed Solomon algorithm.

Figure 13: Reed Solomon syndrome computation

Syndrome computation for Reed Solomon is rather simple in hardware [13]; all it takes
are 8 Flip-Flops per syndrome and a 28 Galois multiplier. While an addition in the Galois
field is nothing but a simple bit-wise XOR, the Galois multiplier can be implemented as
either 142
2-Input XOR gates, or in a bit-serial way spread over 8 cycles with fewer XOR gates but
additional control and MUX logic. Direct comparison of the respective synthesis results
proved the direct approach with only XOR gates to be more area efficient.
The multiplier itself could also be shared between the four syndromes, or simply be
implemented four times in parallel. In this case the synthesis results showed that the
control and multiplexing logic for shared hardware is more area efficient than a direct
parallel implementation. This implementation then resulted in a small FSM with 6 states.

8.2 Error correction on the receiver side
While hardware efficiency on the LTI device side was very important, we had much
more computation power on the receiving smartphone. Instead of just implementing
parity-bit based local error correction and Reed-Solomon only once, we decided to use a
multi-pronged error correction strategy trying many different paths of correcting or not
correcting parity-bit errors, or only correcting some of these errors before feeding each
into the Reed Solomon algorithm. Whenever we had a “clean” result, we used that
instead of requesting another data transmission.

8.3 The Downside of Reed-Solomon error correction
If the Reed-Solomon error correction algorithm comes up “clean” with no errors
corrected, we have a 1 : 232 chance against having errors such that they still result in a
“clean” check – which is a chance of 1 against 4 billion and thus good enough for every
data usage.

However, it is rather difficult to specify the chances of accidentally identifying incorrect
data with exactly one Reed-Solomon error correction. Common sense would claim that
the correction of one Reed-Solomon error uses 2 bytes of the checksum, leaving two
other bytes to guarantee a 1 : 216 chance against errors – which is a chance of 1 against
65’565. This is not very good for medical applications, and mathematicians may prove
even this assumption to be too optimistic.

In case of two error corrections with Reed-Solomon, there is no indication at all, whether
there were only two errors at unknown locations to begin with, or whether there were
more errors and only two corrections were done. As we observed, the Reed-Solomon
algorithm not only gives no hint whether there were two or more errors – but even the
two corrections in case of more than two errors are typically wrong … changing
otherwise correct data just to match the Reed-Solomon equations.

We therefore should have either replaced the Reed-Solomon syndrome computation with
a much smaller CRC32 algorithm - or add a CRC32 checksum on top of the payload data
before computing the 4 Reed-Solomon syndromes. This would then result in a very high
confidence of data corrected with two Reed-Solomon replacements.

For the ASIC, this finding came too late, as it would not only add 32 Flip-Flops, some
multiplexers and glue logic to the design, but also extend the data trans-mission to 88
bytes … what is then no longer evenly dividable across the blocks and segments. As
such, it would have changed the entire framing structure, which was not welcome that
late in the project. This is therefore definitively something to do better next time.

9. Fallback mode and other options
Should the first transmission not go through, any subsequent start of a transmission
within less than 2 minutes will trigger the “fallback” mode. In this case the 9-level
signaling per LED will be reduced to a 5-level signaling and thus using 2 symbols per
byte. This will give a significantly better LED brightness detection at the cost of a longer
download time of 12 seconds instead of 6.4 seconds.

As part of the research, many other configurable options were designed and included, like
10Hz and 30Hz symbol rates, but the methods described here were the most useful and
successful. All flexibility in the LTI device is useless, if you have no communication to
change it after shipping the devices. There is the necessity to select one best method of
operation and then stick to it, as thousands of devices are shipped and remain in the field
for years to come.

With the transmitter cast in an ASIC, the only thing to improve further is the receiver
App. With software upgrade distribution through App stores at almost no additional
costs, there is a lot of flexibility and less roll-out pressure going forward.

10. Implementation
Except for the data RAM access, which was provided by the mixed signal ASIC design
house, the entire code on the transmit side is written in Verilog. It consists of 8 files with
1200 lines of actual code, which may not seem that much. However, over the course of 1
½ years, we did a lot of FPGA verification and iterative improvements.

Figure 14: FPGA implementation of the transmitter

Figure 14 shows one of the verification systems we used. This consist of a simple Xilinx
Spartan-6 FPGA board with a custom extension holding the battery and the three LEDs.

With this methodology, we could develop and calibrate the transmitter as well as the
receiver Apps long before the ASIC tape-out and thus reducing the risk for the chip.

The transmitter implementation by the name “LightCom” needed 64 D-Flip-Flops and
808 logic gates. Implemented on the 0.35µm XFAB process in requires with routing less
than 90’000 µm2, or a square of roughly 300 x 300 µm. With about 21% of the logic area
and 9% of the entire mixed signal ASIC area, this implementation does not come entirely
free. But then again, the cost is in the single-digit cents range per chip.

11. Conclusion
Within a Swiss government funded research project, we had the opportunity to explore,
design and implement a one-way communication from a low-cost battery powered device
to a smartphone. We have shown how such a communication can download data at better
than 10 Bauds, which is good enough for smart sensor data and/or sensor history.

The data rate is not impressive when compared to other typical linking technologies – but
the price is unchallenged:
- On the transmitter side:

o 10 cents for the logic area and drivers on a 0.35µm mixed-signal ASIC
o 0.4 cents per LED at 10k quantities

= 20 cents per device or less

- On the receiver side:
o Only a regular smartphone needed – no additional costs
o Only a software App needed – no costs for software distribution

The technology, signaling method and framework are free to use. There are to our best
knowledge no patents covering this field, and our industry partners have no plan to file
for such patents. This publication is one step to ensure, that it becomes common
knowledge and nobody else can claim this method.

We started our project using three existing LEDs, as they were already part of other
functions of the device. For other applications, two or four LEDs may have a better
transmission speed-to-cost performance. The signaling, symbol- and frame definitions
can be easily adopted.

As for the team, we have learned a lot during this project, implementing our best ideas
and see them grow into a viable product. Many thanks to the CTI (Commission for
Technology and Innovation) Switzerland for supporting us. Also many thanks to the
managers and engineers at ELPRO BUCHS AG for their partnership. In addition, many
thanks to all our colleagues at the Interstate University of Applied Sciences of
Technology for motivation, lunch conversations and feedback on new ideas.

References

[1] Interstate University of Applied Sciences of Technology Buchs, NTB
 https://www.ntb.ch/en/rd/

[2] ELPRO BUCHS AG, manufacturer of stability monitoring for products in transit
 https://shop.elpro.com/EntryContentPageServlet

[3] Libero ITS by ELPRO, Inexpensive multi-level indicator with wireless read-out
 https://shop.elpro.com/ArticleContentPageServlet?action=show
 &artdetail=101&key=ARTIKELNR&value=900620

[4] FDK Lithium, Cell Type CR2025 specifications datasheet
 https://media.digikey.com/pdf/Data%20Sheets/FDK/CR2025.pdf

[5] Computer Vision on Rolling Shutter Cameras, Linköpings Universitet
 http://www.cvl.isy.liu.se/education/tutorials/rolling-shutter-tutorial/

[6] Netfuture - Parity Bits – Error detection capability
 https://netfuture.ch/tutorials/crc/parity-bits/

[7] Kautz, William H. (1954). "Optimized Data Encoding for Digital Computers".

Convention Record IRE (part 4): 47–57.

[8] ROHM PICOLEDTM SML-P11x Series LED Datasheet
 https://www.rohm.com/datasheet/SML-P11UT(R)/sml-p11-e

[9] Wikipedia List of Exmor RS sensors and their utilizing devices
 https://en.wikipedia.org/wiki/Exmor#List_of_Exmor_RS_sensors

[10] Sony Exmor RS - Stacked CMOS Image Sensor
 Back-illuminated and stacked structure provide advanced functionality
 https://www.sony-semicon.co.jp/products_en/IS/sensor1/technology/exmor-rs.html

[11] Waggoner, Ben (2009-11-16). Compression for Great Video and Audio:
 Master Tips and Common Sense. Taylor & Francis US. pp. 150–.
 ISBN 9780240812137

[12] Allan Tépper, TecnoTur LLC: ProVideoCoalition “Framerate workflow for iOS”
 https://www.provideocoalition.com/understanding-iphone-framerates-for-
 shooting-editing-distribution/

[13] C.P. Clarke: BBC R&D White Paper WHP 031, “Reed-Solomon error correction”
 http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf

https://www.ntb.ch/en/rd/
https://shop.elpro.com/EntryContentPageServlet
https://shop.elpro.com/ArticleContentPageServlet?action=show%20&artdetail=101&key=ARTIKELNR&value=900620
https://shop.elpro.com/ArticleContentPageServlet?action=show%20&artdetail=101&key=ARTIKELNR&value=900620
https://media.digikey.com/pdf/Data%20Sheets/FDK/CR2025.pdf
http://www.cvl.isy.liu.se/education/tutorials/rolling-shutter-tutorial/
https://netfuture.ch/tutorials/crc/parity-bits/
https://www.rohm.com/datasheet/SML-P11UT(R)/sml-p11-e
https://en.wikipedia.org/wiki/Exmor#List_of_Exmor_RS_sensors
https://www.sony-semicon.co.jp/products_en/IS/sensor1/technology/exmor-rs.html
https://www.provideocoalition.com/understanding-iphone-framerates-for-%20%09shooting-editing-distribution/
https://www.provideocoalition.com/understanding-iphone-framerates-for-%20%09shooting-editing-distribution/
http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP031.pdf

	DesignCon 2019
	Lowest-cost communication with light from an IoT device to smartphone
	Prof. Laszlo Arato, NTB Buchs
	laszlo.arato@ntb.ch, +41 81 755 3377
	Prof. Rolf Grun, NTB Buchs
	rolf.grun@ntb.ch
	Prof. Dr. Carlo Bach, NTB Buchs
	carlo.bach@ntb.ch
	Dr. Alexander Schoech, NTB Buchs
	alexander.schoech@ntb.ch
	Christoph Capiaghi, NTB Buchs
	christoph.capiaghi@ntb.ch
	Simon Fink, NTB Buchs
	Simon.fink@ntb.ch
	Abstract

