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Abstract 
While fully integrated smart sensors and devices are getting smaller and cheaper, the cost 
of communicating their data grows more significant. Conventional links like USB, 
WLAN, Bluetooth, ZigBee, and others are too expensive, when selling price shall drop 
below $ 5.-. 
 
Implemented for a medication transport temperature-tracking device of a Swiss company, 
we demonstrate the unidirectional data transfer of 84 Bytes of Data from the LTI device 
(Long Term Indicator) to almost any smartphone in less than 10 seconds at almost no 
additional cost using only three LEDs. 
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1. Introduction 
A significant portion of pharmaceuticals are rather sensitive to heat or cold. From 
fabrication to usage they need to be stored within a product specific temperature band, it 
must not be kept below a certain temperature or above a certain other temperature for 
extended period, or it will decay and become not only useless but also potentially 
harmful. This applies to storage, handling and transportation. 
 

 
 

Figure 1:  A Multi-Level PDF Indicator shipped with a collection of pharmaceutics. 
 

There are many pharmaceuticals in need of a continuous cool chain, as they would 
rapidly lose their benefit even at room temperature. This is not always easy to guarantee, 
and if unchecked transport companies would likely cut corners and turn off expensive 
cooling – which is generally difficult to prove, and even more so in poorer, hot and large 
countries. 
 
The industry partner for our research is for many years a supplier of LTI (Long Term 
Indicators) to monitor temperature-sensitive medication shipments. Their typical product 
is the size of an old cell phone and connects with USB to any PC workstation for data-
readout at the end of the shipment.  
 

 
 

Figure 2:  LTI Long-Term Indicators of our industry partner [2] 
 
«Libero C» LTI devices cost about $ 30.- and are thus only viable to track large crates.  



 

 
 

 
To track individual boxes, the company decided to invest into a new device has the size 
of a 3mm thick postal stamp, costs less than $ 5.- and works up to 5 years.  
 

 
 

Figure 3:  The new, much smaller LTI is the size of a postal stamp [3] 
 
Pressing the single button, the user sees on a green, yellow or red LED, indicating the 
temperature stability of the medication. That “go/no-go” information is good enough for 
most cases. However, especially if the drugs are no longer safe to use, one would like to 
know what went wrong – when and where was the box exposed to degradation … and for 
how long. 
 
This is when a data download is needed, somewhere in the world at a doctor’s office.   
  
Big challenge for the new device was this data communication with the end clients, 
where any current technology like USB, Bluetooth, WLAN or ZigBee is far too 
expensive to include and too power-hungry for the integrated battery. 
 
 

2. Hardware Facts 
The product was to consist of a single mixed-signal ASIC chip, a button, 3 LEDs, a 
break-off latch to trigger the start of recording when removed together with the self-
adhesive tape cover when glued to the box of pharmaceuticals. No additional elements 
were allowed to reduce costs. 
 
The size and life expectation dictated the battery to be a 3.0V lithium-ion button cell [4] 
battery with a maximum current of 3.0 mA. Everything needed to fit into this voltage and 
current budget. This is barely sufficient to power one LED, but not three. 
 
The receiver must be a regular smartphone without any hardware modifications. We used 
the Samsung S7 as reference for Android systems, and iPhone 8 for Apple, with the 
intention to migrate the code and receiver support later for a wide range of cell phones. 



 

 
3. LED Signaling 
3.1 Brightness Signaling 
One way to signal different values with an LED is to use pulse-width modulation (PWM) 
to control the LED brightness, and use this to indicate different bit values. A PWM 
frequency of 250kHz proved to be slow enough to turn the LEDs completely on and off 
during each cycle, but was fast enough to ensure that the emitted light will be integrated 
across each pixel during regular movie recording settings on the smartphone camera. 
As a 10% duty cycle has the LED just being active during 10% of the time compared to a 
100% activity, the emitted amount of light is also effectively 10 times larger during 100% 
activity than during 10% activity. 
 

 
 

Figure 4:  Recognized brightness levels for different LED colors 
 
It was somewhat surprising to find, that this is not reflected in the camera observed 
brightness values! The three diagrams on the right show the LED activation in steps of 
256 PWM steps from 0 = never activated to 255 = 100% activated. 
The vertical starting value around 120 is due to additional background light, while all 
values are computed across all significant pixels for a particular LED. 
 
As we found out during our investigation, this non-linearity is not caused by the smart-
phone camera sensitivity itself, but due to a saturation in the center of the recorded LED. 
The graphics on the right shows the enlarged 40 by 40 pixel area of the recorded LED 
and the per-pixel brightness values.  
 
The diagram on the next page shows a 10% LED illumination with saturated pixel 
marked bright yellow. For higher PWM values, the number of saturated pixels increases 
significantly, making the brightness distinctions very difficult. There is simply no 
additional information, on how much a saturated pixel is saturated. Different approaches 
to give saturated pixels a non-linear value depending on the number of saturated pixels 
proved to be futile and lead not to a reliable algorithm. To decrease camera sensitivity to 
avoid saturated pixels was also unsuccessful, as it was making the camera image too dark 
for proper aiming while still not resulting in a usable linear reception. 



 

 
 

Figure 5: Camera image of an LED with pixel-values and saturation at only 10% PWM modulation 
 

A much more successful approach was to pre-distort the PWM modulation to create a 
linear line of brightness values at the receiver. Using only 9 steps of brightness, the 
values of 0 through 8 were exponentially assigned PWM cycles to result in an optimal 
decoding distance between all levels on the receiver side.  
The table and diagram show for the lowest step (0) no LED activation, and full LED 
activation for the highest step (8). 
 

 
 

Figure 6: LED PWM cycles for 9 brightness levels 
 



 

 
3.2 Rolling Shutter Usage 
A completely different approach to detect PWM width on the receiving side is the usage 
of the rolling shutter effect. CMOS cameras typically read and digitize image information 
not simultaneously for the entire image, but line-by-line. This is of course primarily an 
economic aspect of each camera chip, where it only needs 2592 analog-digital converters 
implemented in parallel with the line-by-line method rather than 5 million for a 5-
megapixel imager. 
The result, among others, is the distortion of any fast moving object in the picture due to 
the sampling delay, typically between vertical lines [5]. 
 

 
 

Figure 7:  Image of fast-moving propeller blades exposing the rolling shutter effect by Jason Mullins 
 
Configuring the camera to very high sensitivity (ASA) and short exposure times, 
combined with a very close and intentionally blurred video recording will result in 
pictures as in Figure 8. Recorded at a distance of about 10mm, the three LEDs form each 
a rather big and blurred spot with a width around 100 pixel.  
 

 
 

Figure 8: PWM-cycles captured using rolling-shutter effect 



 

 
With the rolling shutter moving vertically from top to bottom, we can identify at the 
middle added grey horizontal line the common PWM start for all three LEDs. The 
distance to the bottom added horizontal line is proportional to the time of the full 255 
PWM cycles, after which the PWM modulation restarts. Measuring the distance of the 
light and dark vertical sections for each LED will give a good level detection – and even 
more so when using a linear and not exponentially distributed PWM brightness levels. 
 
During these very short but vertically distributed exposure times, the PWM modulation 
of effectively 83 kHz results in active and not-active zones per LED. As the PWM 
modulation for the LEDs starts simultaneously with “on” for all three LEDs, they show 
up starting at the same horizontal line independent of the real physical position of the 
LED. The longer the active side of each LED’s PWM modulation is, the wider its image 
stripe becomes. The distance between two “starting” sides of the stripes is equal to 255 
PWM steps. Knowing this it is easy to measure image-by-image the PWM active cycle 
per LED and its step value. 
 
Using the levels as defined in Figure 6, the symbol in Figure 8 translates to level 5 for the 
green LED (61 of 255 PWM cycles), level 7 for the red LED (150 of 255 PWM cycles), 
and level 4 for the yellow LED (34 of 255 PWM cycles).  
With time as the vertical axis, and no longer only the LED position, there are strange 
effects to observe: The smartphone in Figure 8 is not perfectly aligned with the LTI 
device, so the line of LEDs is somewhat tilted counterclockwise and the yellow LED dot 
higher than the red one, and the green LED dot lower.  
At the time of the first PWM modulation start in the picture, the blurred dot of the yellow 
LED is visible, but not yet the red and green LED dots. By the time the green LED dot 
would become visible, the PWM modulation for the green LED is already turned off 
again, so we do not see anything in the upper half of the green LED spot position. The 
red PWM modulation is much longer active, and so it becomes visible, as the LED is 
active at the time of the horizontal shutter moving downwards. 
At the time of the third start of PWM modulation (bottom grey line), the green and red 
LEDs are still visible, while the spot of the yellow LED is also active but higher up and 
not where the shutter is capturing the photons – so it remains dark at the bottom. 
 
The “rolling shutter” method would be great for high data rate detection – were there not 
two distinct drawbacks: 
 
- This particular usage was never intended by the camera and camera-driver designers, 

and so it is not really supported as a feature.  
 

- Sony and other image sensor developers see the rolling shutter effect as something 
bad and unwanted, and are working hard to eliminate it. It can be expected to become 
more and more difficult to expose in future smartphones. 

 



 

4. Symbols and Symbol Rate 
 
Using nine brightness levels per LED enables us to have a unique “off” value (value 0), 
as well as eight brightness levels to encode 3 bit of information per LED. With three 
LEDs, this results in 8 bits and an additional one-bit parity information. Just like in any 
other modulation, we call this arrangement a “symbol”. 
 
We also implemented a transmission mode with only five instead of nine brightness 
levels, resulting in a much larger brightness distance between the individual levels and 
thus a better “signal-to-noise” ratio and far more robust detection. However, this also 
results in only 2 bits encoding per LED, and thus only six data bits transmitted per 
symbol. To simplify the transmitting finite state machine we implemented two symbols 
per data byte and parity, which is then taking almost twice as long as 9-levels per LED 
transmission. This mode is only used as a “fallback” for a second data transmission if the 
first one was unsuccessful. 
 
As the sender with the LEDs is not synchronized to the receiver (CMOS smartphone 
camera), we need to send the symbols at a slower rate than the recording camera. All 
globally available smartphones support a video capture rate of 30 frames per second, 
derived from the old NTSC television standard – which is most of the time effectively 
29.97 frames per second. As we observed, some smartphones are not even guaranteeing 
this frame rate, but record as a “best effort” frame rate. 
To stay on the safe side, and as there is no information from the used smartphone to the 
transmitting LTI device, we selected a transmission symbol rate of only 15 Hz. This will 
capture most symbols twice, but it guarantees that every sent symbol is captured at least 
once correctly for detection. 
 
To select the correct images for data retrieval, and ignore duplicates is supported by the 
design of the signaling protocol and its rigid frame structure, together with 
synchronization symbols which can be unequivocally distinguished from payload data. 
 
Instead of using a training sequence of known brightness levels to adjust the receiver the 
decision was to implement a simple 8-bit data scrambler to force the transmitted data to 
look random and hit all LED brightness levels about equally often. “Block-ID” and 
synchronization symbols are excluded from scrambling. 
 
Before decoding the data, the receiver is then first assembling a list of all received 
brightness levels for each LED (excluding block-ID and synchronization symbols), and is 
grouping the levels per LED into eight levels with the k-means clustering algorithm. With 
these recognized levels, the payload is extracted from the symbols and restored to its 
original content through a second application of the scrambling sequence. 
 
 



 

5. Parity information and Gray code 
When distributing eight data bits evenly on three LEDs we get an additional 9th spare bit, 
which is used as parity information and first level model-based error correction. The 
parity bit is a simple even-extension of the payload data byte by XOR-ing all 8 bits 
together [6]. I can identify a single-bit error, but not any even number of bit-changes. 
 
The most likely error case is a misinterpretation of the received brightness in one of the 
three LEDs, when it is decoded as either one level too low or one level too high. 
However, this will only work, if adjacent brightness levels always differ from each other 
by exactly one bit – if they differ by two bits a misinterpretation will not cause a parity 
error. Figure 9 shows the nine brightness levels. The lowest level (0) is not used for 
payload data but exclusively for “block-ID” and synchronization symbols. The other 
eight levels 1 through 8 have each a 3-bit data segment associated. From bottom to top,  
level 0 through 8 the applied Gray coding [7] is visible, where from any level to any other 
level only one bit changes. 
 

 
 

Figure 9:  Gray code mapping of data to levels 
 
The most likely error case is the misinterpretation of the brightness level of a single LED, 
while the other two LEDs are decoded correctly. This will then result in a parity error, at 
which time the model based first level of error correction can try to correct the mistake: 
 
- If one of the three decoded LED brightness levels is particularly distant from the 

average brightness level value as derived with the k-means clustering algorithm, it is 
most likely the culprit and belongs to a different level 
 

- If the green LED was decoded as brightness level 0, 1 or 2, it is most likely the one 
causing the error. This is a model based error correction, as countless experiments 
and testing have shown the green LED at the lower levels to be the most difficult one 
to detect – independent of the actual LED manufacturer! 

 
 



 

6. PWM modulation of the LEDs 
6.1 Round-robin activation 
Once again, this proved to be a bit more challenging than expected. As mentioned in the 
beginning, the battery current output is typically limited to 3mA, which is reduced further 
near the battery end-of-life to less than 2 mA. 
Chip LEDs are typically optimized for high output, and not for lowest power 
consumption. Even the smallest like ROHM PICOLED series [8] have a forward current 
IF of 1mA. This means that there must never be more than one LED active at any point in 
time, or the battery voltage could drop below the chip minimal voltage causing brown-out 
effects. 
 
Our solution is to use a round-robin activation scheme, where the LEDs are only active 
one after the other, if indicated by their individual PWM modulation duration. 
 

 
 

Figure 10: Round-robin  LED activity simulation 
 
Figure 10 shows the ModelSim waveforms for the LEDs in a typical PWM signaling. 
“LG” stands for the green LED, which in this example has only 2 PWM cycles, while 
“LR” for the red LED has 6 PWM cycles and “LY” for the yellow LED has 32. The 
PWM cycles start together for all 3 LEDs, and turning off individually when their 
duration is over. The PWM modulation frequency of 250 kHz is thus effectively only 
83.3 kHz per LED, and the maximum LED brightness is even in full (255 of 255 cycles) 
activation only 1/3 of what it could be.  
 
By using a black area around the LED openings on the device package, we found that this 
reduced illumination of the LEDs is still sufficient except for the usage in bright sunlight. 
As the product is typically used in offices and storage facilities, we consider this a 
workable concession to the small and long-lasting battery. 
 
6.2 Symbol-change to PWM synchronization 
Another important issue was to synchronize symbol-changes to the PWM modulation. 
Otherwise a symbol change for example of the red LED from a 5 cycle modulation to a 
64 cycle modulation can have a “restart” effect, if the symbol-change takes place for 
example when the PWM counter is at 30. If not synchronized, the red LED will in this 
case turn on again at PWM cycle 30 and be active all through cycle 64. This 
synchronization needed in our case another 12 Flip-Flops, but proved significant for 
“rolling-shutter” based LED decoding. 
 



 

 

7. Design of the signaling protocol 
7.1 Symbol coding 
Based on the 9-level brightness per LED and thus 8 data bits per symbol there are 84 
symbols needed to transmit the LTI payload data. A rigid frame structure with additional 
“block-ID” and synchronization symbols ensures that payload data is correctly identified. 
 
To make them unique and clearly distinguishable from payload data, “Block-ID” and 
synchronization symbols contain the otherwise never used level 0. 
 

 
 

Figure 11:  From left to right: block-ID, data- and synchronization symbols 
 
Figure 11 shows left the “Block-ID” symbol. While the green and yellow LEDs are 
completely turned off, the red LED can have level 1, 3, 5 or 7 identifying it as “Block-ID 
1” through “Block-ID 4”. This identification permits an “out-of-sequence” payload 
decoding and assembly, and thus 4 possible entry points to start receiving and decoding 
the data transmission. The red spot is marked with color shading to indicate that it can 
hold different values. 
 
Figure 11 shows in the middle a regular payload symbol, where each LED can have any 
brightness levels 1 through 8. The rightmost symbol shows the synchronization symbol 
where no LED is illuminated (all LEDs at level 0). 
 
 
7.2 Framing structure 
Figure 12 lists the entire framing structure with its 96 symbols to transmit 84 bytes of 
payload data and checksum together with the “Block-ID” and synchronization symbols. 
 
Transmission starts with “Block-ID 1”, marking this as the real beginning of the frame. 
This is then followed by 23 symbols as the “data block 1”. This is repeated 4 times for a 
total of 96 symbols including 84 bytes of payload data and checksum. After that, the 
whole frame starts over again, repeating the frame for as long as it is configured. At a 
symbol rate of 15 Hz and 96 symbols, one frame lasts for 6.4 seconds. 



 

With a “simple” receiver logic, the reception has to start with a “Block-ID” and has thus 
to wait in case of just missing a “Block-ID” for 23 symbols, which translates to another 
1.53 seconds. With this, maximum recording time for the smartphone receiver must be 8 
seconds. 
 

 
 

Figure 12:  Framing structure with 4 data blocks 
 
However, with a smarter receiver logic reception can start with any “Block-ID” or 
synchronization frame, which reduces receiver recording time to only 7 seconds. We 
have found that any successful decoding must start with a “Block-ID” or synchronization 
symbol, as this is really needed to identify the correct video frames to use for decoding. 
 
Transmission with repetition of the frames can last as long as it is needed – but again 
there is no feedback from the receiver when it is done. We have found that one minute is 
typically sufficient to press the start button, grab the smartphone with the App already 
running, aim at the LEDs and record the blinking sequence for 8 seconds.  
 
 
7.3 Receiver challenges using smartphones 
Estimating the workload of the smartphone processor and the available real-time 
resources, we expected the main processor of a smartphone to perform the video 
compression during recording. If we therefore use image signal processing instead 
compressing and storing a video stream, the processor workload should be lower than 
during regular video recording. 
 
This proved to be wrong. As we found, almost all modern smartphones are using CMOS 
camera sensors from a single manufacturer and technology: Sony Exmor RS [9]. 
Exmor RS is a stacked chip technology, with a back-illuminated CMOS image sensor on 
the first layer, and an added (stacked) second layer chip for advanced functionality [10]. 
Part of this functionality is the real-time video compression, which is offloading work 
from the main smartphone processor. This is actually bad news for this type of 
application, since the raw image data is no longer directly available on the processor, but 
takes additional processing power to extract the image-by-image data from the captured 
video stream. 
 



 

Another finding was a widely used but little know technique called “Variable Frame 
Rate” VFR. This is an inherent part of modern video compression formats like MPEG-4 
[11], where images are no longer recorded at a constant rate, but rather at “best effort” 
depending on the video compression needs and sometimes the configured constant output 
data rate. While this is compensated on the playback devices using individual time-
stamps per frames, it poses an additional obstacle to video data processing for 
communication. 
On a side note, this problem can be observed when regular video editing tools specialized 
for constant frame rate processing are fed with smartphone videos. Forcing the variable-
frame-rate video stream image-by-image onto a second video stream (picture-in-picture 
or smooth transitions) will always cause synchronization faults between the video and 
audio stream [12]. 
 
To make the transmission more robust against fluctuations in the recorded frame rate of 
the smartphone, every set of 7 data bytes is framed to the left and right by either a 
“Block-ID” or synchronization symbol. As a result, the decoding is still correct for a set 
of 8 symbols  
(7 data- and 1 synchronization symbols) if the camera records 15 or 17 images instead of 
the expected 16. This translates into a variation of +/- 6 percent of the captured frame 
rate. As we observed on different smartphone cameras, the overall frame rate is stable, 
but there are often significant short-term variations in the video recordings.  
 
 

8 Checksum and Forward Error Correction 
8.1 Reed-Solomon checksum generation on the transmitter side 
In order to check data integrity and provide some error correction capability, we 
implemented the computation of 4 Reed Solomon syndromes over the 80 bytes of 
payload data.  
This enables us to either correct up to two errors at any two locations, or up to four errors 
with known location. Based on the symbol-wise parity bit we do have a possible location 
information, which could be used to directly correct the errors or just feed them into the 
Reed Solomon algorithm.  
 

 
 

Figure 13:  Reed Solomon syndrome computation 



 

 
Syndrome computation for Reed Solomon is rather simple in hardware [13]; all it takes 
are 8 Flip-Flops per syndrome and a 28 Galois multiplier. While an addition in the Galois 
field is nothing but a simple bit-wise XOR, the Galois multiplier can be implemented as 
either 142  
2-Input XOR gates, or in a bit-serial way spread over 8 cycles with fewer XOR gates but 
additional control and MUX logic. Direct comparison of the respective synthesis results 
proved the direct approach with only XOR gates to be more area efficient. 
The multiplier itself could also be shared between the four syndromes, or simply be 
implemented four times in parallel. In this case the synthesis results showed that the 
control and multiplexing logic for shared hardware is more area efficient than a direct 
parallel implementation. This implementation then resulted in a small FSM with 6 states. 
 
8.2 Error correction on the receiver side 
While hardware efficiency on the LTI device side was very important, we had much 
more computation power on the receiving smartphone. Instead of just implementing 
parity-bit based local error correction and Reed-Solomon only once, we decided to use a 
multi-pronged error correction strategy trying many different paths of correcting or not 
correcting parity-bit errors, or only correcting some of these errors before feeding each 
into the Reed Solomon algorithm. Whenever we had a “clean” result, we used that 
instead of requesting another data transmission. 
 
8.3 The Downside of Reed-Solomon error correction 
If the Reed-Solomon error correction algorithm comes up “clean” with no errors 
corrected, we have a 1 : 232 chance against having errors such that they still result in a 
“clean” check – which is a chance of 1 against 4 billion and thus good enough for every 
data usage. 
 
However, it is rather difficult to specify the chances of accidentally identifying incorrect 
data with exactly one Reed-Solomon error correction. Common sense would claim that 
the correction of one Reed-Solomon error uses 2 bytes of the checksum, leaving two 
other bytes to guarantee a 1 : 216 chance against errors – which is a chance of 1 against 
65’565. This is not very good for medical applications, and mathematicians may prove 
even this assumption to be too optimistic. 
 
In case of two error corrections with Reed-Solomon, there is no indication at all, whether 
there were only two errors at unknown locations to begin with, or whether there were 
more errors and only two corrections were done. As we observed, the Reed-Solomon 
algorithm not only gives no hint whether there were two or more errors – but even the 
two corrections in case of more than two errors are typically wrong … changing 
otherwise correct data just to match the Reed-Solomon equations.  
 
We therefore should have either replaced the Reed-Solomon syndrome computation with 
a much smaller CRC32 algorithm - or add a CRC32 checksum on top of the payload data 
before computing the 4 Reed-Solomon syndromes. This would then result in a very high 
confidence of data corrected with two Reed-Solomon replacements. 



 

For the ASIC, this finding came too late, as it would not only add 32 Flip-Flops, some 
multiplexers and glue logic to the design, but also extend the data trans-mission to 88 
bytes … what is then no longer evenly dividable across the blocks and segments. As 
such, it would have changed the entire framing structure, which was not welcome that 
late in the project. This is therefore definitively something to do better next time.  
 
9. Fallback mode and other options 
Should the first transmission not go through, any subsequent start of a transmission 
within less than 2 minutes will trigger the “fallback” mode. In this case the 9-level 
signaling per LED will be reduced to a 5-level signaling and thus using 2 symbols per 
byte. This will give a significantly better LED brightness detection at the cost of a longer 
download time of 12 seconds instead of 6.4 seconds.  
 
As part of the research, many other configurable options were designed and included, like 
10Hz and 30Hz symbol rates, but the methods described here were the most useful and 
successful. All flexibility in the LTI device is useless, if you have no communication to 
change it after shipping the devices. There is the necessity to select one best method of 
operation and then stick to it, as thousands of devices are shipped and remain in the field 
for years to come.  
 
With the transmitter cast in an ASIC, the only thing to improve further is the receiver 
App. With software upgrade distribution through App stores at almost no additional 
costs, there is a lot of flexibility and less roll-out pressure going forward.  
 
10. Implementation 
Except for the data RAM access, which was provided by the mixed signal ASIC design 
house, the entire code on the transmit side is written in Verilog. It consists of 8 files with 
1200 lines of actual code, which may not seem that much. However, over the course of 1 
½ years, we did a lot of FPGA verification and iterative improvements. 
 

 
 

Figure 14:  FPGA implementation of the transmitter 



 

Figure 14 shows one of the verification systems we used. This consist of a simple Xilinx 
Spartan-6 FPGA board with a custom extension holding the battery and the three LEDs. 
 
With this methodology, we could develop and calibrate the transmitter as well as the 
receiver Apps long before the ASIC tape-out and thus reducing the risk for the chip. 
 
The transmitter implementation by the name “LightCom” needed 64 D-Flip-Flops and 
808 logic gates. Implemented on the 0.35µm XFAB process in requires with routing less 
than 90’000 µm2, or a square of roughly 300 x 300 µm. With about 21% of the logic area 
and 9% of the entire mixed signal ASIC area, this implementation does not come entirely 
free. But then again, the cost is in the single-digit cents range per chip.   
 
11. Conclusion 
Within a Swiss government funded research project, we had the opportunity to explore, 
design and implement a one-way communication from a low-cost battery powered device 
to a smartphone. We have shown how such a communication can download data at better 
than 10 Bauds, which is good enough for smart sensor data and/or sensor history. 
 
The data rate is not impressive when compared to other typical linking technologies – but 
the price is unchallenged:   
- On the transmitter side: 

o 10 cents for the logic area and drivers on a 0.35µm mixed-signal ASIC 
o 0.4 cents per LED at 10k quantities 

=   20 cents per device or less 
 

- On the receiver side: 
o Only a regular smartphone needed – no additional costs 
o Only a software App needed – no costs for software distribution 

 
The technology, signaling method and framework are free to use. There are to our best 
knowledge no patents covering this field, and our industry partners have no plan to file 
for such patents. This publication is one step to ensure, that it becomes common 
knowledge and nobody else can claim this method. 
 
We started our project using three existing LEDs, as they were already part of other 
functions of the device. For other applications, two or four LEDs may have a better 
transmission speed-to-cost performance. The signaling, symbol- and frame definitions 
can be easily adopted. 
 
As for the team, we have learned a lot during this project, implementing our best ideas 
and see them grow into a viable product. Many thanks to the CTI (Commission for 
Technology and Innovation) Switzerland for supporting us. Also many thanks to the 
managers and engineers at ELPRO BUCHS AG for their partnership. In addition, many 
thanks to all our colleagues at the Interstate University of Applied Sciences of 
Technology for motivation, lunch conversations and feedback on new ideas. 
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