Quick Demo Guide

E5061B ENA Series Network Analyzer Option 3L5/005 LF-RF Network Analyzer with Impedance Analysis, 5 Hz – 3 GHz

Procedure overview

- 1. Connect fixture to Gain-Phase test port
- 2. Set measurement parameters
- 3. Perform calibration
- 4. Connect DUT then scale measurement trace
- 5. Perform equivalent circuit analysis

Required Instrument and fixture

Instrument

E5061B-3L5/005/720 or E5061BEP-NZA (E5061BEP-NZA is the package solution which has all required option for impedance analysis)

DUT Leaded component

In this demo, a 0.1 uF leaded capacitor is measured. You can evaluate other components as well. Also, you can even evaluate SMD(chip) components if you have a test fixture for SMD components (16034E or 16034G).

1. Connect fixture to Gain-Phase test port

In this demo...

- Impedance measurement (Series-thru method, GP port)
- · Calibration at the fixture
- Equivalent Circuit Analysis

Legend: [Key name] = front panel hardware key Key name = soft key Number = front panel hardware numeric key

2. Set measurement parameters

- a. Press [Preset] then press OK
- b. Set measurement traces
 Press [Display] then press Num of traces , and 2
 Press Allocate Traces and x2
- c. Set measurement parameters
 Press [Meas] the press Impedance analysis menu
 Press Method then press GP Series (T 50 ohm, R 1
 Mohm)
 Press |Z|

Press [Trace Next] to select trace2 then press Cs

d. Set Y-axis to log scale for trace1
 Press [Trace Next] to select trace1
 Press [Scale] then Y-Axis and Log

What is the method under impedance analysis menu? There are several topologies (or methods) to measure impedance depending on the DUT's impedance range. With the **GP Series (T 50 ohm, R 1 Mohm),** Seriesthough method at GP (Gain-Phase) port of the E5061B (port impedance: T: 50 ohm, R: 1 Mohm) is used.

Agilent Technologies

- e. Set log sweep parameters
 Press [Sweep Setup] then press Sweep type, and
 Log Freq
 Press [Start] then enter 100 Hz
 Press [Stop] then enter 30 MHz
- f. Set IF bandwidth
 Press [Avg] then press IFBW AUTO
 Press IFBW Auto Limit and enter 100 Hz

Quick Demo Guide

E5061B ENA Series Network Analyzer

To measure impedance accurately, recommend to perform calibration. However, if you don't have calibration kit, you can skip step3.

3. Perform calibration

- a. Select calibration kit Press [Cal] then press Cal Kit, and Leaded 50 ohm
- b. Measure calibration standard
 Press [Cal] then press Calibrate
 Press Impedance calibration
 Make open state then press Open
 Make short sate then press Short
 Make load state then press Load
- c. Activate calibration Press **Done**

Refer to following figure to make each state for the standard measurement.

Nothing

Insert short bar (equipped with fixture)

Insert 50 ohm resister

R1

C1

49.10071 mΩ 80.45941 nF

4.501030 nH

For load state, use leaded 50 ohm standard (5012-8846) equipped with E5061B-720

www.agilent.com/find/e5061b

Product specification and description in this document subject to change without notice.

Technical data and availability subject to change without notice. \odot Agilent Technologies, Inc. 2011, Printed in USA, June 25, 2011

5990-8374EN

- 4. Connect DUT then scale measurement trace
 - a. Connect DUT to the fixture

b. Press [Scale] then press Auto Scale All

5. Perform equivalent circuit analysis

a. Select equivalent circuit Press [Analysis] then press Equivalent Circuit Press Select circuit then press D Press Display to turn on analysis Press Calculate

b. Perform simulation

Press [Analysis] then press Equivalent Circuit Press Simulate Press C1 then change value by [↑] or [↓]

•W		} •		
R1 C1 L1	49.: 200 4.5	1007 .000 0103	1 m 0 n	Ω F

Measured trace and simulated trace can be compared by changing each component's value. Simulated trace is stored in the Memory trace.

Which is the right circuit model for my DUT?

Models for equivalent circuit should be selected depending on the type of the DUT.

- A. Inductors with high core loss
- B. Inductors with high winding resistance or resistors with low resistance value
- C. Resistors with high resistance value
- D. Capacitors
- E. Resistors

Agilent Technologies