
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022 2385

Deep Learning-Based Near-Fall Detection
Algorithm for Fall Risk Monitoring System Using

a Single Inertial Measurement Unit
Ahnryul Choi, Tae Hyong Kim , Oleksandr Yuhai, Soohwan Jeong, Kyungran Kim,

Hyunggun Kim , and Joung Hwan Mun

Abstract— Proactively detecting falls and preventing
injuries are among the primary keys to a healthy life for the
elderly. Near-fall remote monitoring in daily life could pro-
vide key information to prevent future falls and obtain quan-
titative rehabilitation status for patients with weak balance
ability. In this study, we developed a deep learning-based
novel classification algorithm to precisely categorize three
classes (falls, near-falls, and activities of daily living (ADLs))
using a single inertial measurement unit (IMU) device
attached to the waist. A total of 34 young participants were
included in this study. An IMU containing accelerometer and
gyroscope sensors was fabricated to acquire acceleration
and angular velocity signals. A comprehensive experiment
including thirty-six types of activities (10 types of falls,
10 types of near-falls, and 16 types of ADLs) was designed
based on previous studies. A modified directed acyclic
graph-convolution neural network (DAG-CNN) architecture
with hyperparameter optimization was proposed to predict
fall, near-fall, and ADLs. Prediction results of the modified
DAG-CNN structure were found to be approximately 7%
more accurate than the traditional CNN structure. For the
case of near-falls, the modified DAG-CNN demonstrated
excellent prediction performance with accuracy of over 98%
by combining gyroscope and accelerometer features. Addi-
tionally, by combining acceleration and angular velocity
the trained model showed better performance than each
model of acceleration and angular velocity. It is believed
that information to preemptively handle the risk of falls and

Manuscript received 3 May 2022; revised 24 July 2022;
accepted 11 August 2022. Date of publication 16 August 2022; date of
current version 1 September 2022. This work was carried out with the
support of “Cooperative Research Program for Agriculture Science and
Technology Development (Project No. PJ01531103)” Rural Development
Administration, Republic of Korea. (Corresponding authors:
Hyunggun Kim; Joung Hwan Mun.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted by
the Ethics Committee of Sungkyunkwan University.

Ahnryul Choi is with the Department of Biomedical Engineer-
ing, Catholic Kwandong University, Gangneung, Gangwon 25601,
South Korea, and also with the Department of Bio-Mechatronic Engineer-
ing, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea
(e-mail: achoi@cku.ac.kr).

Tae Hyong Kim, Oleksandr Yuhai, Soohwan Jeong, Hyunggun Kim,
and Joung Hwan Mun are with the Department of Bio-Mechatronic
Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419,
South Korea (e-mail: sanctified@skku.edu; oleksandr@g.skku.edu;
jeongsoohwan92@gmail.com; hkim.bme@skku.edu; jmun@skku.edu).

Kyungran Kim is with the Agricultural Health and Safety Division, Rural
Development Administration, Jeonju, Jeollabuk 54875, South Korea
(e-mail: kimgr@korea.kr).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNSRE.2022.3199068, provided by the authors.

Digital Object Identifier 10.1109/TNSRE.2022.3199068

quantitativelyevaluate the rehabilitationstatus of the elderly
with weak balance will be provided by monitoring near-falls.

Index Terms— Pre-impact fall detection, near-fall detec-
tion, convolution neural network, directed acyclic graph,
inertial measurement unit.

I. INTRODUCTION

BALANCED posture is the process of securing an equi-
librium state by controlling the deviation of the center of

gravity within the base of support of the human body [1]. It is
maintained through the integration of the visual, vestibular and
somatosensory systems [2], [3], [4]. Although the definition
and causes of falls vary [5], from the biomechanical perspec-
tive, falls can be described as a phenomenon where the center
of gravity drops rapidly toward the ground and parts of the
human body hit the ground. Every year, 32% of elderly people
over the age of 70 experience fall incidents, and more than half
of those who have been injured show a high case fatality rate
within 6 months of the fall [6], [7]. Elderly people who have
had fall incidents recover slowly even with slight bruising or
simple fractures, leading to declining physical independence
and pathologic conditions in activity [8]. Therefore, a primary
key to a healthy life in the elderly is to proactively detect falls
and prevent injuries.

Fall monitoring systems utilize wearable sensors such as
accelerometers and gyroscopes [9]. These sensors have grad-
ually become smaller and lighter and have been designed
to attach to the human body easily. In particular, a single
inertial measurement unit (IMU), a hardware system made of
an accelerometer and an angular velocity sensor, enables low-
cost, low-complexity, low-power, and high-speed data process-
ing, and is widely used for various analyses including motion
analysis and fall detection [10]. Most of the fall detection tests
are focused on falls and activities of daily living (ADLs). Falls
can be divided into four phases in terms of fall detection: pre-
impact, impact, unstable, and stable phases. Many researchers
have used the characteristics of the impact and stable phases
to describe falls [11]. This type of fall detection method is
called post-impact fall detection, which can determine whether
elderly people have fallen but cannot prevent injuries from
falls. Alternatively, pre-impact fall detection attempts to find
the moment before fall. Once a pre-impact fall is detected,
an airbag system or inflatable hip protection can be activated

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7355-3886
https://orcid.org/0000-0001-9797-5872
https://orcid.org/0000-0003-4213-785X

2386 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

to significantly reduce injuries for the elderly [12], [13].
However, pre-impact fall detection remains a tough challenge
as the free-fall phase is not clear. Regarding experimental
equipment for pre-impact fall detection, only a few studies
have used wearable IMU devices [12], [14], [15].

One recent strategy for pre-impact fall detection is to
conduct near-fall detection [9]. Near-fall is a phenomenon in
which balance is lost but a correct recovery operation actually
leads to not falling [16]. Elderly people experience multiple
near-falls before experiencing falls and steadily monitoring
near-falls in their daily lives can help predict falls in advance
[17]. Near-falls are included in the non-fall category as there
is no actual fall, but they have features that distinguish them
from ADLs (hit, bump, slip, trip, and misstep) [18]. For
example, near-falls have various other types of data including
stumble, incorrect weight transfer, and leaning too far in any
direction [19]. It is imperative to conduct near-fall detection
for more accurate and more practical fall risk assessment
[20]; therefore, near-fall remote monitoring in daily life could
provide key information to prevent future falls, as well as
quantitative rehabilitation status for patients with weak balance
ability [17]. Moreover, near-fall detection can reduce various
malfunctions of protection equipment including airbag systems
and inflatable hip protection gears. However, experimental
analysis of near-fall detection systems has not been conducted
as much as fall detection since near-fall is not as specific a
situation as fall when monitoring daily life of the elderly. The
classification of fall, near-fall, and ADLs is a challenge.

Previous fall detection studies often employed threshold-
based methods because they are easily to apply. Accelerom-
eters and gyroscopes are commonly used to understand the
characteristics and patterns of acceleration and angular veloc-
ity and to determine the thresholds [14], [21]. More recently,
machine learning-based methods have been utilized to classify
falls. Feature points can be selected from the accelerometers
and gyroscopes using classical machine learning methods such
as support vector machine (SVM), k-nearest neighbor (KNN),
or deep learning algorithms such as artificial neural network
(ANN) and long short-term memory (LSTM) [12], [21], [22],
[23]. Classification of fall detection using machine learning
algorithms shows higher performance than the threshold-based
classification, and the recent advances in deep learning-based
algorithms particularly enables even more precise classifica-
tion in various fields [11], [24]. Conventional fall detection
methods have mainly performed the classification of fall and
ADLs due to the difficulty of near-fall detection (i.e., pre-
impact fall detection). While there are a few cases avail-
able to employ various near-fall data (suppl. Table I) [8],
[9], [25], [26], [27], [28], [29], near-fall detection is an
important factor for a comprehensive understanding of fall
mechanism since repetitive long-term near-falls would lead to
fall incidence [25].

Various studies to estimate a fall using an IMU device so
far have attempted to discriminate between falls and ADLs.
Even studies on detecting near-falls have been limited to a
binary classification (fall vs. near-fall or near-fall vs. ADLs)
using single or a few kinds of near-fall data [17], and
there is no study of comprehensively classifying falls, near-
falls, and ADLs utilizing various types of fall, near-fall, and

ADLs experimental data. Because near-falls occur in various
situations that can overlap with actual falls or ADLs, it is
challengeable to classify near-falls along with falls and ADLs.
However, precisely classifying near-falls along with falls and
ADLs can provide a clue to the risk of falls in the elderly
or vertigo patients in advance. Additionally, the quality of the
fall prediction system can be improved by decreasing false
alarms through accurate detection of near-falls. In the present
study, we developed a novel deep learning-based classification
algorithm to precisely categorize three classes (fall, near-fall,
and ADLs) using a single IMU device attached to the waist
for the application to a hip protection system. Our specific
objectives were as follows:

1. Custom design and manufacture a single IMU hardware
device that can acquire acceleration and angular velocity
signals.

2. Establish a novel pre-impact fall detection algorithm
based on a deep learning model that can precisely classify
falls, near-falls, and ADLs using comprehensive experimental
data (10 types of falls, 10 types of near-falls, and 16 types of
ADLs).

3. Evaluate the performance between deep learning models
(modified directed acyclic graph CNN vs. typical CNN) and
between using sensor signals (acceleration vs. angular velocity
vs. combination of acceleration and angular velocity) of the
IMU device.

The rest of this paper is organized as follows: Section II
presents the materials and methods of data collection, pro-
posed prediction procedure and performance measure. The
experimental results with the proposed deep learning model
are demonstrated in section III. Finally, we interpret the results,
state the contribution of this study and give the limitations and
future direction of the study. Additionally, we have provided a
literature review related to near-fall detection as supplementary
material.

II. MATERIALS AND METHODS

A. Data Collection

1) Subjects: A total of 34 young participants (21 males
and 13 females) aged between 21 and 34 years (mean =
27.6 years), with a body mass of 45 - 81 kg (mean =
62.1 kg), and a height from 1.57 to 1.85 m (mean = 1.67 m),
participated in this study. All participants were healthy and
did not have any type of agnosia disease or musculoskeletal
problems. Prior to the experiments, all participants filled out
consent forms. The entire experiments were carried out in
accordance with the relevant approved guidelines of the Ethics
Committee of Sungkyunkwan University.

2) Apparatus: An inertial measurement unit (IMU) contain-
ing 3-axis accelerometer and 3-axis gyroscope sensors was
fabricated to acquire acceleration and angular velocity signals
of falls, near-falls and ADLs. An IMU module (MPU-6050,
JK Electronics, Seoul, South Korea) with an electricity con-
sumption with a voltage of 3 - 5 V was used in this device. The
fabricated device contained a 16-bit analog-to-digital converter
for simultaneous sampling of the 3-axis accelerometer and
gyroscope. The data output range was ± 250 - 2,000 d/s for the
gyroscope and ± 2 - 16 G for the accelerometer. The data were
collected at a sample rate of 40 Hz. A Bluetooth V4.0 BLE

CHOI et al.: DEEP LEARNING-BASED NEAR-FALL DETECTION ALGORITHM FOR FALL RISK MONITORING SYSTEM 2387

Fig. 1. (A) IMU hardware device and (B) electrical circuit diagram.

(HM-11, JN Huamao Technology Co., Jinan, China) module
was used for wireless connection between the sensing and
data collection devices. A microcontroller (STM32F103CBT6,
STMicroelectronics, Geneva, Switzerland) with a 3.7 V /
550 mAh lithium polymer battery (DTP 503040-PCM, Shen-
zhen Data Power Technology Ltd., Shenzhen, China) was
used for data collection. The size of the device (including
the protective plastic case) was 60 (length) × 35 (width) ×
15 (height) mm, and the weight was 150 g. The device was
connected to a workstation PC using the Bluetooth module
and a Bluetooth signal receiver. C#-based Windows form
data acquisition software (HMSoft, JN Huamao Technology
Co., Jinan, China) was utilized to collect real-time 3-axis
accelerometer and gyroscope data. A detailed hardware and
electrical circuit diagram of the device is shown in Fig.1.

3) Experimental Protocols: First, each participant was asked
to watch a pre-recorded video clip containing a detailed
demonstration of each activity. For each trial, the participants
were asked once again to watch the segment of the video
clip for the corresponding action. The custom-designed IMU
sensor was positioned on the left anterior iliac crest of the
pelvis [10]. The workstation PC and Bluetooth signal receiver
were located at the side of the protective mat.

Each activity experiment attempt was made to implement
active daily livings, fall, and near-fall scenarios as realis-
tically as possible. Ten classes of near-falls were chosen
based on previous near-fall-related studies: near-fall forward
due to tripping, near-fall backward due to tripping, near-fall
forward due to slipping, near-fall backward due to slipping,
near-fall forward due to misstep, near-side fall on the right
side, near-side fall on the left side, sit-to-stand near-fall
forward, hit/bump near-fall forward, and hit/bump near-fall
backward [9], [27]. For the safety of subjects, a gymnasium
mattress and high-density ethylene foam were placed where
subjects might fall to reduce the impact force during fall or
near-fall movements. Subjects were also asked to wear knee
and elbow protective gears and a helmet [10]. For each near-
fall action, the subjects had to by any means restore balance
on their own (e.g., to shift their center of mass by certain
movements of their arms and legs) as demonstrated in the

Fig. 2. Flowchart of the proposed procedure to discriminate between
falls, near-falls, and ADLs.

pre-recorded demo video. Before simulating active events such
as near-fall due to tripping, slipping, misstep, and walking to
side near-fall, the subjects were asked to walk 3 m from the
specified initial position at a self-preferred speed. In the case
of tripping near-fall, we tightly fixed a plastic box of size
32 (length) × 23.5 (width) × 9 (height) cm to the floor with
packing tape at 15 cm from the safety mat. For slipping near-
fall, we utilized a thin polyvinyl chloride (PVC) desk pad of
size 81 (length) × 50 (width) × 0.2 (height) cm, placed closely
to the safety mat and firmly fixed at the edges with packing
tape to the floor. Before each slipping near-fall trial, we wet
this PVC pad using a water sprayer to minimize friction and
create a more realistic slipping condition [20]. For passive
events such as sit-to-stand near-fall and hit/bump near-fall,
the subject had to take the correct initial position (sit-to-stand
fall: sit comfortably on a chair located 40 cm from the mat,
hit/bump near-fall: stand at the initial position located 10 cm
from the mat), and stay still in this pose for 2-3 sec. After
completing each attempt, the subject had to stop at the marked
spot 15 cm from the mat (if the action ended inside the mat,
the subject had to walk slowly to the indicated place) and
stand motionless for 3-5 sec before returning to the initial
position. The 16 classes of ADLs (standing, forward lying,
backward lying, leftward lying, rightward lying, sitting, sit to
stand, stand to sit, stand to lying, lying to stand, walking,
walking by bending, jumping, walking to jumping, upstairs
and downstairs) and the 10 classes of falls (forward fall,
backward fall, leftward fall, rightward fall, fall while standing,
sitting on empty chair, forward fall while walking, backward
fall while walking, tripping forward and slipping backward)
were designed based on the previous studies [10], [30], [31].
We collected raw data containing 680 occasions of near-falls,
2,176 of ADLs, and 1,360 of falls.

B. Proposed Prediction Procedure for Falls, Near-Falls,
and ADLs

Our proposed pre-impact fall detection model with ADLs
and near-falls is described in Fig. 2. The flow consists of
data acquisition (3-axis acceleration and angular velocity),

2388 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 3. Comparison between fall (stand to forward ground fall) and near-
fall (stand to forward near-fall).

preprocessing (filtering and labeling), feature extraction, model
training with hyperparameter optimization and performance
evaluation. More detailed descriptions are as follows.

1) Fall and near-fall: Basically, there are four phases of fall.
The pre-fall phase is when normal activity occurs (classified
as ADLs) prior to the body losing balance. Next, the critical
phase is the time when the fall begins. The impact occurs when
the subject contacts the ground due to the fall. Lastly, during
the post-fall phase, the subject lies entirely on the surface
of the fall. The complete end of the post-fall phase and the
return of the subject to the standing position is marked as
“End” (Fig. 3(A)). We pay attention to the detection of fall
impact acceleration and angular velocity magnitude prior to
the impact point within the critical phase [13], [14]. In this
way, it becomes possible to detect falls (and their various
types) before the moment of impact while labeling the data
activity type.

In the case of near-fall, there are three main phases similar to
fall: the pre-near-fall phase (classified as ADLs) occurs before
the body loses balance. The start of the balance recovery phase
is the moment when near-fall begins due to various factors
such as tripping and slipping. During the balance recovery
phase, the subject performs various movements to shift the
arms and legs and restore the center of mass to the normal
and stable state to prevent an actual fall [20]. The completion
of the balance recovery phase and the return of the subject to
the stable standing position are marked as “End” (Fig. 3(B)).
In this study, the critical and balance recovery phase to detect
among falls, near-falls and ADLs are labeled as the fall and
near-fall states, respectively.

C. Data Preprocessing

The data obtained from the IMU sensors were thoroughly
reviewed for incorrect and duplicate data, which could cause
inadequate operation of the machine learning algorithm.
To improve the quality of the dataset, we identified and
removed the various errors and inconsistencies in the collected
data resulting from the loss of the Bluetooth signal between
the device and workstation PC. A sliding median filter was
used to remove noise and obtain more reliable datasets. One
of the key operations in data preprocessing to develop a

machine learning-based classification or prediction model is
data labeling [32]. In this study, we manually labeled each
data frame using the calculated sum magnitude vector (SMV)
of the accelerometer signal to accurately identify and label the
signal sections responsible for the ADLs, fall (critical phase),
and near-fall (balance recovery phase), respectively. Lastly,
we set a window size of 40 and divide the signal by using
an overlapping window size of 50% [10].

D. Feature Extraction

Feature extraction is one of the most important steps for
human activity recognition (HAR) models. Building an effi-
cient feature vector improves the performance of machine
learning algorithms. Kim et al. [10] selected 40 specific
features to achieve the best performance of their machine
learning-based HAR algorithms. Considering previous HAR
research using accelerometers and gyroscopes, we selected
40 unique features to effectively detect ADLs, falls, and
near-falls [33], [34]. In this study, we extracted 23 main
accelerometer features and 7 gyroscope features, excluding the
raw signal from both sensors. In addition, we obtained the esti-
mation of the systemic quaternion to approximate the ori-
entation of the subject using the extended Kalman filter
(Quaternions) [9]. The 40 features were calculated as shown
in Table I. Therefore, a squared input matrix for the deep
learning model was created with size of 40 (window
size) × 40 (number of features).

1) Deep Learning Network: Typical CNN models have
a hierarchical chain structure with feedforward connection
through which various invariant representations of the input
data are calculated, i.e., certain features are extracted [35].

However, CNN models do not consider the middle- and
low-level features, which can play important roles in the
classification of ADLs, falls, and near-falls, especially in the
case of a multiclassification problem. Therefore, we pro-
posed a novel deep neural network architecture, namely
modified directed acyclic graph convolutional neural network
(DAG-CNN) (Fig. 4). This architecture has the advantage of
relatively efficient, simple, and fast detection and classification
of near-falls by extracting various multilevel features from the
deep layers of the CNN. DAG-CNN allows us to extract not
only high-level features, but various multi-level features by
adding additional “branched layers”. The process of training
the main CNN structure and its branches occurs simultane-
ously, reducing the size of the model and quickly and more
efficiently completing the process of feature extraction [36].

The squared input matrix is created by calculating features.
A bicubic interpolation was then employed to resize the input
matrix obtained from data pre-processing into a suitable input
data size for our proposed DAG-CNN that is 32 (height) ×
32 (width) × 1 (channel). The main structure of our proposed
DAG-CNN model starting with the input layer with zero center
normalization using the formula below:

Z = x − μ

σ
(1)

where x is the original data, μ is the mean, and σ is the
standard deviation.

CHOI et al.: DEEP LEARNING-BASED NEAR-FALL DETECTION ALGORITHM FOR FALL RISK MONITORING SYSTEM 2389

Fig. 4. Architecture for modified DAG-CNN model.

TABLE I
TYPES OF FEATURES EXTRACTED FROM THE IMU DEVICE

Next, it is consists of three convolutional layers with kernel
sizes of 5 × 5, 2 × 2, and 2 × 2 and with 16, 32, and
64 filters, respectively. We employed Leaky ReLU with a
standard parameter (0.01) as an activation function for each
convolutional layer of the main structure. The Leaky ReLU
can be calculated as follows:

f (x) =
�

0.01x, i f x < 0

x, otherwi se
(2)

where x is the element of the output feature map from the
previous convolutional layer [37].

Following the first two activation functions (convolutional
and leaky ReLU layers), MaxPooling was applied to reduce
computational complexity and variance and extract the most
important low-level features from the neighborhood of the
elements of each feature map. The size of the feature map
after pooling (maximum or average) can be calculated using
the following formula in equation 3.�

I − P

S

�
+ 1 (3)

where I is the input data shape, P is the pooling window size,
and S is the size of stride.

Branched structures (the top and bottom layers in Fig. 4)
consist of two consecutive convolutional layers, each of which
has filters of size 3 × 3. The first stacked convolutional layer
has a stride size of 2 × 2 with no pooling, while the second
stacked convolutional layer has no stride with a pooling size
of 1 × 1. The stacked convolutional layers (without pooling
layer between the convolutional layers) of these branched
structures allow features to be transferred and learned directly
from the first convolutional layer to the second without los-
ing any data. It also allows a hierarchical decomposition of
the input and provides more flexibility in expressing non-
linear transformations without losing information. Hence, it is
important to note that features of a different level and type,
contrasting from the main structure features, are extracted in
these branched structures. These branched structures are then
attached to the “Add” layer, where the element-wise addition
of two branched function maps to the characteristic map of
the main structures is performed as in the formula below.⎡

⎢⎣
a · · · b
...

. . .
...

c · · · d

⎤
⎥⎦ + . . . +

⎡
⎢⎣

e · · · f
...

. . .
...

g · · · h

⎤
⎥⎦

=
⎡
⎢⎣

a + . . . + e · · · b + . . . + f
...

. . .
...

c + . . . + g · · · d + · · · + h

⎤
⎥⎦ (4)

Prior to the classification layer, average pooling on the
feature map obtained from the last add layer is applied. In this
way, we performed the generalization of feature maps from
all channels (the main structure and two branched structures)

2390 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

TABLE II
OPTIMIZED HYPERPARAMETERS OF THE CNN AND MODIFIED

DAG-CNN MODELS

of our modified DAG-CNN without losing any important
information or features.

For a nonlinear combination of the data of multi-level fea-
tures and its classification, the output data of the convolutional
layers representing the features of several levels pass through
the final average pooling layer to a fully connected deep
CNN model consisting of three fully connected layers. The
first layer consists of 256 neurons, the second layer contains
128 neurons, and the third layer has 64 neurons. To optimize
the model, enhance its speed, and prevent possible overfitting
problems, a dropout with a parameter of 20% is used after
the first layer with 256 neurons to randomly remove 20%
of the neurons. Next, the SoftMax function was used to
predict the polynomial probability distribution between the
multiple classes. The last fully connected layer number of our
proposed DAG-CNN-based deep learning model was set to be
3 nodes to classify into three classes of activities (1: falls, 2:
near-falls, and 3: ADLs). Detailed architecture and parameters
of DAG-CNN are listed in suppl. Table II. In order to evaluate
the performance of the proposed DAG-CNN architecture,
we compared it with a classic LeNet-5 CNN model [38]. The
typical CNN architecture is made of input layer, 3 convolution
layers with leaky ReLU layer and max pooling layer between
each convolution layer and average global pooling layer. Three
convolution layers utilized kernel size of 5 × 5, 2 × 2 and
2 × 2 with the number of output filter size of 16, 32 and 64,
respectively. Next, three fully connected layers and a softmax
layer is followed. The general architecture of the typical CNN
model is similar to the main branch of the proposed DAG-
CNN architecture (excluding layers 12 to 18 in suppl. Table II).
MATLAB (2020b, Mathwork, USA) was utilized for training
and testing CNN models with a window system of Intel(R)
i7-5930K CPU @ 3.50GHz, Nvidia Titan XP GPU 12GB.

2) Hyperparameter Optimization: Optimal hyperparameter
values for training deep learning and CNN architecture set-
ting for best performance achievement while preventing from
overfitting was found using Bayesian optimization technique.
Bayesian optimization reflects prior knowledge to find optimal
values during a search process. This technique finds the best
value based on two elements: (i) surrogate model and ii)
acquisition functions [39]. The objective function for this study
is to minimize the classification error of near-fall detection
model. Five parameters (Initial learning rate, L2 regularization

value, optimizer type, mini batch size, maximum epochs value)
for training were selected as design parameters and their lower
and upper bound values are listed as shown in Table II. The
optimal parameters for the learning rate drop period and learn-
ing rate drop factor were set manually. Maximum objective
evaluation number was set as 20 and the best hyperparameter
values were used to train our deep learning model as final
training.

E. Performance Measure

In this study, we applied leave-one-participant-out cross-
validation techniques to validate our model [40]. The perfor-
mance criteria of accuracy, specificity, sensitivity, precision,
Negative Predictive Value (NPV), F1-score, and Matthews
Correlation Coefficient (MCC) were calculated for each of
the three classes (ADLs, falls and near-falls) separately, and
then their averages were used to further compare the two deep
learning models (suppl. Table III). Specifically, MCC is a more
reliable statistic compared to accuracy, that gives a high score
only if the prediction performs well in all four categories of the
confusion matrix (true positive, false negative, true negative,
and false positive), proportionally to the size of the positive
elements and the size of the negative elements in the dataset
at the same time. It returns a value between -1 and +1,
where +1 represents a perfect prediction, 0 is no better than
a random prediction, and -1 indicates a complete mismatch
between prediction and observation. It can be calculated using
the following formula.

MCC

= T P×T N −F P ×F N√
(T P +F P)(T P+F N)(T N +F P)(T N +F N)

(5)

where, TP, TN, FP, and FN mean true positive, true negative,
false positive, and false negative, respectively.

III. RESULTS

The training and validation process of accuracy curves
are displayed in Fig. 5. The modified DAG-CNN converged
closely to 100% accuracy, but the accuracy of the CNN
converged to approximately 93%. The accuracy of the training
process for both models became gradually stable after the
20th epoch and hardly altered after the 30th epoch. Therefore,
to prevent overfitting, we stopped the training process at the
40th epoch. The modified DAG-CNN also demonstrated a
faster convergence speed than CNN.

Confusion matrices of CNN and modified DAG-CNN model
by using gyroscope, accelerometer and combination of gyro-
scope and accelerometer features are shown in Fig. 6. The
gyroscope feature-based CNN showed low performance with
an accuracy range between 69.8% and 89.7%. However, the
modified DAG-CNN demonstrated excellent prediction per-
formance with an accuracy of over 98% for combination of
gyroscope and accelerometer features. For the detection of
ADLs and falls, the use of the accelerometer features showed
better performance than the use of the gyroscope features in
both CNN and modified DAG-CNN models. However, for
near-fall detection alone, the use of the gyroscope features

CHOI et al.: DEEP LEARNING-BASED NEAR-FALL DETECTION ALGORITHM FOR FALL RISK MONITORING SYSTEM 2391

Fig. 5. Training and validation accuracy of CNN and modified DAG-CNN
models.

showed superior performance to the use of the accelerometer
features in both CNN and modified DAG-CNN models as
shown in Fig. 6(A), 6(B), 6(D) and 6(E). The performance
difference between the uses of the accelerometer and gyro-
scope features with the CNN confusion matrix was greater
than that with the modified DAG-CNN confusion matrix.
Both CNN and modified DAG-CNN models based on the
combination of accelerometer and gyroscope features showed
better performance compared to those based on accelerometer
and gyroscope alone.

Based on the confusion matrices of CNN and modi-
fied DAG-CNN models, the receiver-operating characteristic
(ROC) curves are displayed and computed area under curve
(AUC) for three classes (ADLs, fall and near-fall) as shown in
Fig. 7. The best performance was obtained from the modified
DAG-CNN using the combination of the accelerator and gyro-
scope features, with a sharp decreasing true positive rate with
decreasing false positive rate. The ROC curve of CNN only
with the gyroscope features showed a better near-fall detection
performance than ADLs and falls (Fig. 7(A)). Similarly, the
modified DAG-CNN only with the gyroscope features showed
high performance in near-fall detection (Fig. 7(D)). For the
CNN model, the AUCs of the near-fall class for the gyro-
scope, accelerometer and combination of accelerometer and
gyroscope feature-based models were 0.97, 0.93 and 0.98,
respectively. The AUCs of ADLs and falls were higher than
near-falls for the accelerometer feature-based CNN model.
However, the AUC of near-falls was higher than ADLs and
falls for gyroscope and combination of accelerometer and
gyroscope feature-based model as shown in Fig. 7(A) and
7(C). As shown in Fig. 7(D) to 7(F), the AUCs of near-fall for
three different feature-based models were 0.99, 0.99 and 0.99,
respectively. The AUCs of near-fall for gyroscope showed
higher values than AUCs of ADLs and falls.

The algorithm working time (system latency) and lead time
(time difference between the time of fall impact and pre-fall
detection) are presented in Table III. The system latencies of
fall, near-fall, and ADLs were about 56.4 and 58.5 ms for the
CNN and modified DAG-CNN models, respectively, with sim-
ilar computation times. The average lead time was presented as
660.9 and 662.0 for the CNN and modified DAG-CNN models,
respectively. The inflation time of the protection systems, such
as airbags, will require about 120 ms [41]. Even considering

the system latency, enough inflation time for the protection
system could be acquired in future work.

The overall quantitative performance evaluation of CNN
and the modified DAG-CNN is demonstrated in Fig. 8. The
modified DAG-CNN outperformed CNN in every comparison
of performance criterion. The accuracies of CNN and the
modified DAG-CNN only with the gyroscope features ranged
between 70.4% to 86.8% and 80.9% to 92.2%, respectively.
The average accuracy and F1-score with the accelerometer
features showed an improvement in the modified DAG-CNN
with a value of 96.6% and 0.96 compared to CNN with a
value of 90.0% and 0.88, respectively. The combination of
gyroscope and accelerometer feature-based model for CNN
and modified DAG-CNN showed improvement of 14% and
10%, respectively, for F1-score as compared to gyroscope
feature-based model.

IV. DISCUSSION

Near-falls, which exist between falls and ADLs, generally
occur more frequently than practical falls [17]. Any system
that can automatically quantify the frequency of near-falls can
complement the existing self-report to monitor balance status
and evaluate fall risk more precisely [28]. In this study, we pro-
posed a deep learning-based precise fall detection algorithm
capable of simultaneously detecting fall, near-fall, and ADLs.
In the modified DAG-CNN model, fall, near-fall and ADLs
were classified with accuracy of up to 99%. In addition, when
the model was trained using features based on the combination
of acceleration and angular velocity data, the accuracy was
improved by about 3% and 12% compared to when accelera-
tion and angular velocity were used, respectively.

One of the key problems of pre-impact fall detection
algorithms is the lack of available indicators directly related
to dynamic near-fall detection [25]. It is also very difficult
to treat near-falls and falls because some active types of
near-falls produce higher acceleration peaks than falls, which
was demonstrated using the public dataset of Cogent Lab
[42]. In contrast, the median value of the minimum SMV
of accelerometer signal for near-falls is often lower than that
for falls during the free-fall phase. In addition, Lee et al. [9]
experimentally demonstrated that various balance recovery
movements during simulated near-falls can lead to significant
increase in acceleration peak, which becomes a challengeable
constrain in recognizing falls and near-falls. On the other
hand, Trkov et al. [43] demonstrated that the extended Kalman
filter-based prediction for cases of small slips can have a
similar nature to walking through dynamic analysis (neglecting
the friction force) of slips of different intensities. It is also
important to note that the lack of a certain homogeneity
between the various types of near-falls such as trip, slip,
misstep, etc., makes identifying near-falls based on IMU data
alone, without contextual information, an especially difficult
task [28]. In our study, almost all possible types of falls, near-
falls, and ADLs based on the previous fall-related studies
were included from the comprehensive experiments, taking
into account the problem of data heterogeneity depending on
various factors such as severe types of near-falls almost similar
to the fall patterns and relative passive types of near-falls
similar to the ADLs in nature. Despite the heterogeneity

2392 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

Fig. 6. CNN confusion matrix ((A) gyroscope, (B) accelerometer, and (C) combination of gyroscope and accelerometer) and modified DAG-CNN
confusion matrix ((D) gyroscope, (E) accelerometer, and (F) combination of gyroscope and accelerometer).

Fig. 7. CNN ROC curves ((A) gyroscope, (B) accelerometer, and (C) combination of gyroscope and accelerometer) and modified DAG-CNN ROC
curves ((D) gyroscope, (E) accelerometer, and (F) combination of gyroscope and accelerometer).

Fig. 8. Accuracy and F-1 score of leave-one-participant-out cross-
validation from CNN and modified DAG-CNN models.

characteristics of near-fall data and various abnormal artifacts
of movement arising from the relatively strong relocation of
the center of gravity to restore balance, there is a strong
need to categorize falls, near-falls, and ADLs as three distinct
classes.

In this study, modified DAG-CNN architecture that can
increase the dimension of input features was used to discrim-
inate between falls, near-falls, and ADLs (Fig. 4). A classical
straightforward CNN (3 convolutional layers, 2 subsampling
layers and 2 fully connected layers) is similar to a structure of
feed-forward neural network. Each convolutional layer is made
of convolution, pooling and nonlinear activation functions.
Usually, an average pooling layer and tanh activation function

are applied with multi-layer perceptron as last classifier. This
type of model extract features fits to coarse classification
not fine-graded ones. For instance, the walking and standing
activity shows discrete signal difference which can be a coarse
classification. DAG-based network shows characteristics of no
circular cycle with one-direction presented as topologically
sorted. It was explored earlier in the context of recurrent neural
networks that use feedback from forward layers to backward
layers to capture dynamic states. This type of network is
widely applied in blockchain field such as Byteball coin
[44]. DAG-network has high transaction speed since each unit
is processed by parallel and relatively small network size.
This type of structure allows to directly learn multi-scale
representations (features) and fuse multi-scale features into
a single training procedure [45]. Previous research reported
that DAG-CNN network can discriminate with higher detec-
tion performance since it can extract multi-scale features
from multiple layers simultaneously from coarse to fine
features [46]. In this study, the feature-level fusion [47],
which could combine extracted features from different levels
(high, middle, low) and create the final feature vector, was
employed. It provided more discriminative features for clas-
sifying fall, near-fall and ADLs. A previous study reported
that the baseline chain structed CNN and DAG-network
base CNN showed increased detection rate range between
8% to approximately 20%, which is similar to our 3-class
prediction rate [45].

CHOI et al.: DEEP LEARNING-BASED NEAR-FALL DETECTION ALGORITHM FOR FALL RISK MONITORING SYSTEM 2393

TABLE III
SYSTEM LATENCY AND LEAD TIME OF THE CNN AND MODIFIED

DAG-CNN MODELS

To determine the superiority of the methodology used in
this study, it was compared to previous methodologies related
to binary classification for the prediction of near-fall (Suppl.
Results and suppl. Table IV). By summarizing a few previous
studies, machine learning- and threshold-based algorithms are
generally used to predict near-fall [33]. The critical point in
using threshold-based algorithms is to determine features to
classify and their threshold values. However, it is out of the
scope of this study to implement and determine the thresh-
old feature for additional classification (falls vs. near-falls
vs. ADLs) because most previous studies extract threshold
features based on expert knowledge or experience (trial and
errors). In addition, it is generally known that the machine
learning model has higher performance than the classification
by threshold-based model [48]. Therefore, previous methods
using machine learning were compared with our method.
They showed lower performances than our method. The
decreased accuracy of the previous machine learning models
might result from using a comprehensive dataset including
36 types of activities (10 types of falls, 10 types of near-
falls, and 16 types of ADLs) instead of only a few types
of activities. As mentioned in the previous paragraph, the
heterogeneity characteristics of near-fall movements widely
distributed between actual ADLs and fall regions might be
a factor that could degrade classifier performance. Therefore,
modified DAG-CNN architecture which expands the feature
dimension plays a critical role in improving the performance of
the classifier to precisely categorize falls, near-falls, and ADLs.

The ultimate goal of the project is to develop a protection
system that monitors the risk of falls in advance and activates
airbag devices if a fall is detected. The deep learning model
proposed in this study will be used as the control algorithm of
the protection system. In future work, it will be necessary
to incorporate the proposed deep learning model into the
control system. Optimization of the deep learning model
taking into account the specifications and unit price of the
control unit is necessary for system mounting. Additionally,
the interface function should be implemented by linking with a
smartphone application. Diagnosis of falls or near-falls should
be transmitted through Bluetooth wireless communication to
provide information that can be utilized by users or clinicians.
If a problem occurs in Bluetooth communication (error in the
transmitted data or disconnection out of range), an environ-
ment in which to reconnect by giving a notification (buzzer
or vibration, etc.) to the user will be provided. Therefore, the
fall, near-fall, and ADLs classification model proposed in this
study has the potential to play a key role as the basic algorithm
of the protection system.

The limitations of this study are as follows. First, a fall
simulation experiment was conducted based on a scenario
set in the laboratory, not an actual fall. The subjects were
limited to young and healthy people because it could be
very dangerous for elderly people with weakened balance or
people with diseases such as dizziness to perform fall exper-
iments. Nevertheless, since actual falls occur faster and with
more force than in simulated experiments [49], the detection
algorithm proposed in this study is sufficiently significant.
Second, there is a limitation in not classifying the 36 types
of activities (10 types of falls, 10 types of near-falls, and
16 types of ADLs) in detail. Detailed classification of the type
or direction of the fall and near-fall can estimate the injury site,
leading to the appropriate operation of the protection system
[10]. In future research, additional in-depth study on detailed
classification is necessary. Thrid, the fall detection algorithm
of this study has a limitation in that only CNN-based deep
learning models were used. Until now, various types of deep
learning models have been developed, and it is known that the
performance of the deep learning model varies depending on
the characteristics of the training data [50]. However, this study
proposed a comprehensive fall detection algorithm that can
simultaneously predict falls, near-falls, and ADLs. Therefore,
an in-depth study to compare and evaluate performance by
applying various deep learning models within this process is
needed in the future.

In conclusion, we have proposed a novel deep learning-
based pre-impact fall detection algorithm that can precisely
discriminate falls, near-falls, and ADLs using acceleration and
angular velocity signals of a single IMU device. Custom-
designed IMU device hardware was designed to obtain accel-
eration and angular velocity signals. The modified DAG-CNN
structure was used to predict falls, near-falls, and ADLs, and a
comparative evaluation with traditional CNN techniques was
performed. As a result, the prediction results of the modified
DAG-CNN structure were found to be approximately 7% more
accurate than the traditional CNN structure. Additionally, the
deep learning model trained by combining acceleration and
angular velocity showed better performance than each model
of acceleration and angular velocity. The results of this study
will improve the performance of the fall detection system
by reducing false alarms. It is believed that information to
preemptively handle the risk of falls as well as quantitative
evaluation of the rehabilitation status of the elderly with weak
balance will be provided by monitoring of near-falls.

REFERENCES

[1] A. Choi, T. G. Kang, and J. H. Mun, “Biomechanical evaluation of
dynamic balance control ability during golf swing,” J. Med. Biol. Eng.,
vol. 36, no. 3, pp. 430–439, Jun. 2016.

[2] A. Choi, T. Sim, and J. H. Mun, “Improved determination of dynamic
balance using the centre of mass and centre of pressure inclination
variables in a complete golf swing cycle,” J. Sports Sci., vol. 34, no. 10,
pp. 906–914, Aug. 2015.

[3] C. Hrysomallis, “Relationship between balance ability, training and
sports injury risk,” Sports Med., vol. 37, no. 6, pp. 547–556, 2007.

[4] A. Choi, E. Park, T. H. Kim, G. J. Im, and J. H. Mun, “A novel
optimization-based convolution neural network to estimate the contri-
bution of sensory inputs to postural stability during quiet standing,”
IEEE J. Biomed. Health Inform., early access, Jun. 27, 2022, doi:
10.1109/JBHI.2022.3186436.

http://dx.doi.org/10.1109/JBHI.2022.3186436

2394 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 30, 2022

[5] A. A. Zecevic, A. W. Salmoni, M. Speechley, and A. A. Vandervoort,
“Defining a fall and reasons for falling: Comparisons among the views of
seniors, health care providers, and the research literature,” Gerontologist,
vol. 46, no. 3, pp. 367–376, Jun. 2006.

[6] F. De Backere et al., “Towards a social and context-aware multi-sensor
fall detection and risk assessment platform,” Comput. Biol. Med., vol. 64,
pp. 307–320, Sep. 2015.

[7] M. Á. Á. De La Concepción, L. M. S. Morillo, J. A. Á. García,
and L. González-Abril, “Mobile activity recognition and fall detection
system for elderly people using ameva algorithm,” Pervasive Mobile
Comput., vol. 34, pp. 3–13, Jan. 2017.

[8] M. V. Albert, K. Kording, M. Herrmann, and A. Jayaraman, “Fall
classification by machine learning using mobile phones,” PLoS One,
vol. 7, no. 5, May 2012, Art. no. e36556.

[9] J. K. Lee, S. N. Robinovitch, and E. J. Park, “Inertial sensing-based
pre-impact detection of falls involving near-fall scenarios,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 23, no. 2, pp. 258–266, Mar. 2015.

[10] T. H. Kim, A. Choi, H. M. Heo, K. Kim, K. Lee, and J. H. Mun,
“Machine learning-based pre-impact fall detection model to discriminate
various types of fall,” J. Biomech. Eng., vol. 141, no. 8, May 2019.

[11] Y. Wu, Y. Su, R. Feng, N. Yu, and X. Zang, “Wearable-sensor-based pre-
impact fall detection system with a hierarchical classifier,” Measurement,
vol. 140, pp. 283–292, Jul. 2019.

[12] L.-J. Kau and C.-S. Chen, “A smart phone-based pocket fall accident
detection, positioning, and rescue system,” IEEE J. Biomed. Health
Inform., vol. 19, no. 1, pp. 44–56, Jan. 2015.

[13] G. Shi, C. S. Chan, W. J. Li, K.-S. Leung, Y. Zou, and Y. Jin, “Mobile
human airbag system for fall protection using MEMS sensors and
embedded SVM classifier,” IEEE Sensors J., vol. 9, no. 5, pp. 495–503,
May 2009.

[14] M. N. Nyan, F. E. H. Tay, and E. Murugasu, “A wearable system for
pre-impact fall detection,” J. Biomech., vol. 41, no. 16, pp. 3475–3481,
2008.

[15] G. Wu and S. Xue, “Portable preimpact fall detector with inertial
sensors,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 2,
pp. 178–183, Apr. 2008.

[16] C. M. Arnold and R. A. Faulkner, “The history of falls and the
association of the timed up and go test to falls and near-falls in older
adults with hip osteoarthritis,” BMC Geriatrics, vol. 7, no. 1, pp. 1–9,
Jul. 2007.

[17] I. Pang, Y. Okubo, D. Sturnieks, S. R. Lord, and M. A. Brodie,
“Detection of near falls using wearable devices: A systematic review,”
J. Geriatric Phys. Therapy, vol. 42, no. 1, pp. 48–56, 2019.

[18] S. N. Robinovitch et al., “Video capture of the circumstances of falls
in elderly people residing in long-term care: An observational study,”
Lancet, vol. 381, no. 9860, pp. 47–54, 2013.

[19] N. H. Chehade, P. Ozisik, J. Gomez, F. Ramos, and G. Pottie, “Detecting
stumbles with a single accelerometer,” in Proc. Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc., Aug. 2012, pp. 6681–6686.

[20] B. Lindholm, P. Hagell, O. Hansson, and M. H. Nilsson, “Prediction of
falls and/or near falls in people with mild parkinson’s disease,” PLoS
One, vol. 10, no. 1, Jan. 2015, Art. no. e0117018.

[21] A. M. Sabatini, G. Ligorio, A. Mannini, V. Genovese, and L. Pinna,
“Prior-to- and post-impact fall detection using inertial and baromet-
ric altimeter measurements,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 24, no. 7, pp. 774–783, Jul. 2016.

[22] M. Yu, Y. Yu, A. Rhuma, S. M. R. Naqvi, L. Wang, and J. A. Chambers,
“An online one class support vector machine-based person-specific fall
detection system for monitoring an elderly individual in a room environ-
ment,” IEEE J. Biomed. Health Inform., vol. 17, no. 6, pp. 1002–1014,
Nov. 2013.

[23] A. Choi, H. Jung, K. Y. Lee, S. Lee, and J. H. Mun, “Machine learning
approach to predict center of pressure trajectories in a complete gait
cycle: A feedforward neural network vs. LSTM network,” Med. Biol.
Eng. Comput., vol. 57, no. 12, pp. 2693–2703, Nov. 2019.

[24] N. E. El-Attar, M. K. Hassan, O. A. Alghamdi, and W. A. Awad, “Deep
learning model for classification and bioactivity prediction of essential
oil-producing plants from Egypt,” Sci. Rep., vol. 10, no. 1, pp. 1–10,
Dec. 2020.

[25] M. Nouredanesh, K. Gordt, M. Schwenk, and J. Tung, “Automated
detection of multidirectional compensatory balance reactions: A step
towards tracking naturally occurring near falls,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 28, no. 2, pp. 478–487, Feb. 2020.

[26] A. Weiss, I. Shimkin, N. Giladi, and J. M. Hausdorff, “Automated
detection of near falls: Algorithm development and preliminary results,”
BMC Res. Notes, vol. 3, no. 1, p. 62, 2010.

[27] J. M. H. Karel et al., “Towards unobtrusive in vivo monitoring of
patients prone to falling,” in Proc. Annu. Int. Conf. IEEE Eng. Med.
Biol., Aug. 2010, pp. 5018–5021.

[28] T. Iluz et al., “Automated detection of missteps during community
ambulation in patients with Parkinson’s disease: A new approach for
quantifying fall risk in the community setting,” J. Neuroeng. Rehabil.,
vol. 11, no. 1, pp. 1–9, Apr. 2014.

[29] A. R. Kammerdiner and A. N. Guererro, “Data-driven combinatorial
optimization for sensor-based assessment of near falls,” Ann. Oper. Res.,
vol. 276, nos. 1–2, pp. 137–153, May 2019.

[30] T. H. Kim, A. Choi, H. M. Heo, H. Kim, and J. H. Mun, “Acceleration
magnitude at impact following loss of balance can be estimated using
deep learning model,” Sensors, vol. 20, no. 21, p. 6126, Oct. 2020.

[31] Z. Zhong et al., “A real-time pre-impact fall detection and protection
system,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM),
Jul. 2018, pp. 1039–1044.

[32] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep
learning,” Electron. Markets, vol. 31, no. 3, pp. 685–695, Apr. 2021.

[33] O. Aziz, M. Musngi, E. J. Park, G. Mori, and S. N. Robinovitch,
“A comparison of accuracy of fall detection algorithms (threshold-
based vs. machine learning) using waist-mounted tri-axial accelerometer
signals from a comprehensive set of falls and non-fall trials,” Med. Biol.
Eng. Comput., vol. 55, no. 1, pp. 45–55, Apr. 2016.

[34] N. Pannurat, S. Thiemjarus, and E. Nantajeewarawat, “Automatic fall
monitoring: A review,” Sensors, vol. 14, no. 7, pp. 12900–12936, 2014.

[35] L. Wang, M. Peng, and Q. Zhou, “Pre-impact fall detection based
on multi-source CNN ensemble,” IEEE Sensors J., vol. 20, no. 10,
pp. 5442–5451, May 2020.

[36] J. O. P. Arenas, R. J. Moreno, and R. D. H. Beleno, “Convolutional
neural network with a DAG architecture for control of a robotic arm
by means of hand gestures,” Contemp. Eng. Sci., vol. 11, no. 12,
pp. 547–557, 2018.

[37] Y.-D. Zhang, C. Pan, J. Sun, and C. Tang, “Multiple sclerosis identi-
fication by convolutional neural network with dropout and parametric
ReLU,” J. Comput. Sci., vol. 28, pp. 1–10, Sep. 2018.

[38] B. Kim, N. Yuvaraj, K. R. S. Preethaa, and R. A. Pandian, “Surface
crack detection using deep learning with shallow CNN architecture
for enhanced computation,” Neural Comput. Appl., vol. 33, no. 15,
pp. 9289–9305, Jan. 2021.

[39] W. Jia, C. Xiu-Yun, Z. Hao, X. Li-Dong, L. Hang, and D. Si-Hao,
“Hyperparameter optimization for machine learning models based on
Bayesian optimization,” J. Electron. Sci. Technol., vol. 17, no. 1,
pp. 26–40, 2019.

[40] F. Mun and A. Choi, “Deep learning approach to estimate foot pressure
distribution in walking with application for a cost-effective insole
system,” J. Neuroeng. Rehabil., vol. 19, no. 1, pp. 1–14, Jan. 2022.

[41] T. Tamura, T. Yoshimura, M. Sekine, M. Uchida, and O. Tanaka,
“A wearable airbag to prevent fall injuries,” IEEE Trans. Inf. Technol.
Biomed., vol. 13, no. 6, pp. 910–914, Nov. 2009.

[42] E. Casilari, J.-A. Santoyo-Ramón, and J.-M. Cano-García, “Analysis of
public datasets for wearable fall detection systems,” Sensors, vol. 17,
no. 7, p. 1513, Jun. 2017.

[43] M. Trkov, K. Chen, J. Yi, and T. Liu, “Inertial sensor-based slip detection
in human walking,” IEEE Trans. Autom. Sci. Eng., vol. 16, no. 3,
pp. 1399–1411, Jul. 2019.

[44] E. A. Shammar, A. T. Zahary, and A. A. Al-Shargabi, “A survey of IoT
and blockchain integration: Security perspective,” IEEE Access, vol. 9,
pp. 156114–156150, 2021.

[45] S. Yang and D. Ramanan, “Multi-scale recognition with DAG-
CNNs,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 1215–1223.

[46] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1–9.

[47] S. Taheri and Ö. Toygar, “On the use of DAG-CNN architecture for age
estimation with multi-stage features fusion,” Neurocomputing, vol. 329,
pp. 300–310, Feb. 2019.

[48] S. Rastogi and J. Singh, “A systematic review on machine learning
for fall detection system,” Comput. Intell., vol. 37, no. 2, pp. 951–974,
Apr. 2021.

[49] J. M. Anglin, T. Sugiyama, and S.-L. Liew, “Visuomotor adaptation
in head-mounted virtual reality versus conventional training,” Sci. Rep.,
vol. 7, no. 1, p. 45469, Apr. 2017.

[50] J. S. Sánchez, R. A. Mollineda, and J. M. Sotoca, “An analy-
sis of how training data complexity affects the nearest neigh-
bor classifiers,” Pattern Anal. Appl., vol. 10, no. 3, pp. 189–201,
Aug. 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

