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Abstract: Accurately measuring the lower extremities and L5/S1 moments is important since L5/S1
moments are the principal parameters that measure the risk of musculoskeletal diseases during
lifting. In this study, protocol that predicts lower extremities and L5/S1 moments with an insole
sensor was proposed to replace the prior methods that have spatial constraints. The protocol is
hierarchically composed of a classification model and a regression model to predict joint moments.
Additionally, a single LSTM model was developed to compare with proposed protocol. To optimize
hyperparameters of the machine learning model and input feature, Bayesian optimization method
was adopted. As a result, the proposed protocol showed a relative root mean square error (rRMSE)
of 8.06~13.88% while the single LSTM showed 9.30~18.66% rRMSE. This protocol in this research
is expected to be a starting point for developing a system for estimating the lower extremity and
L5/S1 moment during lifting that can replace the complex prior method and adopted to workplace
environments. This novel study has the potential to precisely design a feedback iterative control
system of an exoskeleton for the appropriate generation of an actuator torque.

Keywords: human motion analysis; lifting task; machine learning; lower body joint moment;
work-related musculoskeletal disorders; insole system

1. Introduction

More than 40% of workers suffer from work-related musculoskeletal disorders (WMSD)
annually due to manual materials handling (MMH) tasks despite efforts to improve the
work environment [1]. It has been reported that 52% of WMSDs are caused by lifting
tasks, of which 62% are low-back musculoskeletal disorders [2]. The high mechanical
load applied to the lumbar spine during lifting is considered a major risk factor for back
pain. Studies have been conducted to measure the risk factor by calculating low-back
loading [3]. Internal moments to a body segment are caused by a combined action of
muscle strength within the joint or tensile force of the skin, joint capsule, and ligaments [4].
By calculating external joint moments, internal moments acting within each joint can be
estimated. The L5/S1 moment tends to increase according to the weight of the object.
Repetitive moment is one of the risk factors that can increase the incidence of low-back
musculoskeletal disorders [5]. The lower extremity and L5/S1 moment are also used as
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evaluation parameters for lifting posture [6]. Therefore, the moment is being studied as a
major parameter to determine the risk of musculoskeletal disorders during lifting [3,6–8].

Optical 3D motion tracking system (OTS) is a method of calculating the lower extrem-
ity and L5/S1 moments [9]. The OTS acquires optical marker trajectory and ground reaction
force based on optical camera, force plate, and the subject’s anthropometric information.
It then calculates the moment of each joint using the acquired optical marker trajectory,
ground reaction force, and inverse dynamic method [10]. Calculating moments using an
OTS is considered as the golden standard method. Many studies have been conducted
to measure the lower extremity and L5/S1 moment during symmetric and asymmetric
lifting [1,6,8,11,12]. However, the OTS has a disadvantage in that it is impossible to be
utilized in a working environment due to spatial constraints [13,14]. To overcome a spatial
limitation, methods using wearable sensors have been reported [15]. Wearable sensors
such as inertial measurement unit (IMU), insole sensor, or portable force plate can be
used to calculate joint moments [16,17]. In the case of an IMU sensor, the center of joint
can be obtained by attaching it onto the body segment, with an insole sensor or portable
force plate that can be worn on shoes to obtain ground reaction force data [18]. Previous
studies suggest L5/S1 moment measurement system using 12–17 IMU sensors and 2 force
shoes or insole sensors [18,19]. According to recent studies mentioned above, studies using
human body modeling [16–18] based on wearable sensor data have shown the possibility of
overcoming limitations of OTS using multiple wearable sensors. However, using multiple
sensors showed a complicated application method, inducing unnatural movement and
taking a longer time for detachment in a real working environment. In addition, a robust
estimation of movement is difficult due to substantial movement variability and irregular
data [20].

To overcome these limitations mentioned above, previous studies have been conducted
to predict biomechanical parameters such as ground reaction force, joint torque, and joint
moment by replacing it with artificial intelligence techniques [21,22]. Mundt et al. (2020)
have conducted a study to estimate the angle and moment of lower extremity joints during
gait using IMU sensors and machine learning techniques. Their research suggested a
predictive model using long short-term memory (LSTM). The predicted moment and joint
angle showed a normalized root mean square error (RMSE) of about 10% [23]. Additionally,
Choi et al. (2019) have developed an LSTM model that predicts the inclination angle
between the center of gravity and the center of pressure when walking using time-series
data obtained from a single IMU sensor. Compared to an artificial neural network (ANN),
the relative RMSE result of the LSTM model showed 6% reduction, indicating improved
accuracy [24]. Previous studies have reported that the LSTM shows particularly high
performance when predicting biomechanical parameters using motion sequenced sensor
data while developing a machine learning model in the biomechanical field.

Therefore, in this study, we evaluated the performance of LSTM for predicting a joint
moment based on plantar pressure data collected from a wearable insole sensor during a
lifting task.

The purpose of this study is to propose a system that predicts lower extremities and
L5/S1 joint moment using machine learning model and plantar pressures from an insole
sensor system. In detail, we developed a new deep learning structure by combining classi-
fier and regressor as one network to estimate the lower extremities and L5/S1 moments.
Additionally, we evaluated the usefulness of the proposed machine learning model by
applying to various lifting conditions.

2. Materials and Methods
2.1. Subjects, Apparatus, and Lifting Experiments

This experiment was conducted on 9 adult males (age: 23.1 ± 1.4 years, height:
176.6 ± 4.9 cm, weight: 69.3 ± 6.7 kg). The subjects were selected based on the question-
naires of the subjects considering general musculoskeletal diseases such as rheumatoid
arthritis, osteoarthritis, and mechanical pain in the lower extremities and lumbar joints [25].
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This experiment was approved by the local ethics committee. It was carried out following
the guidelines of Sungkyunkwan University. In addition, written informed consent was
obtained from all participants before the experiment.

As experimental equipment, six MCam2 cameras (VICON, Oxford Metrics, Oxford,
UK) and 2 OR6-6-2000 ground reaction forces (AMTI Inc., Newton, MA, USA) were used.
Each system was operated at sampling rates of 120 Hz and 1080 Hz, respectively [24,26,27].
Participants wore a Pedar-X insole system (Pedar Mobile, Novel Electronics Inc., GmbH,
Munich, Germany). Data were acquired at 100 Hz [21,28]. The camera and ground reaction
force data were time-series synchronized with a Vicon 460 system. The motion analysis
system and the Pedar-X insole system were manually synchronized based on the instance
when the subject lifted a box from the ground during a lifting task.

Optical markers were attached to 16 anatomical landmarks of the lumbar spine and
lower extremity joints of each subject based on the modified Helen Hayes marker pro-
tocol [11,26]. In addition, one optical marker was attached to the box to distinguish the
event of the lifting task. Each subject performed warm-up exercises before participating
in this experiment. Preliminary movements were performed to adapt to the experimental
environment. For the lifting motion, two postures were performed: squat and stoop. Each
lifting motion was performed with boxes (Size: 32 × 40 × 25 cm3) having 3 different
weights (4, 8, and 12 kg). The speed of the lifting task was set as normal, fast, or slow. Each
speed indicated the normal, fast, and slow speed considered by the subject, respectively.
Each subject performed the 54 times of lifting motions (3 repetitions for 18 types of lifting
tasks: 2 postures × 3 weights × 3 speeds). Subjects are asked to lift boxes from ground to
the knuckle height [5,29].

2.2. Data Processing

Optical marker trajectories obtained by OTS were filtered by 4th-order, low-pass
Butterworth filter and cut-off frequency was set at 5 Hz [12]. Kinematic data of the
lower extremities and L5/S1 moments were calculated using Euler angle and numerical
differentiation methods. Based on the kinematic data, the ground reaction force data of
6 axes, and the subject’s anthropometric information, the lower extremities and L5/S1
moments of sagittal plane were calculated. These calculations were performed using
kinematic and kinetic models developed in the Biomedical Engineering Laboratory of
Sungkyunkwan University [8,30]. During the lifting task, pressure data obtained from the
insole sensor were filtered with 3rd Butterworth, zero-lag low-pass filter and the frequency
was set at 7 Hz [31]. The event of the lifting task was segmented based on the optical marker
attached to the box. The time when the box was moved from the ground was marked as the
starting point and the time when the box reached the highest point was marked as end of
task. The amplitude of moment obtained from the OTS and 99 pressure data collected from
the insole system were normalized by dividing the subject’s body weight (BW). In addition,
the length of moment and pressure data were normalized to 100% for each trial [27]. In
the proposed model, each posture was labeled for motion classification where the squat
posture was labeled as 0 and the stoop posture was labeled as 1. The total insole pressure,
lower extremities, and L5/L1 moments dataset was 480.

2.3. Neural Network Architecture

In this study, an architecture hierarchically composed of a classification model and a
regression model was proposed to predict lower extremities and L5/S1 moments during
symmetric lifting using plantar pressure obtained from the insole sensor. In order to classify
the lifting motion, the following three machine learning techniques commonly used as
classification models in previous studies [32,33] were used: ANN, Support Vector Machine
(SVM), Random Forest (RF). The LSTM model showing relatively high performance on a
time-series data set [34–37] was used as a regression model for predicting joint moment.
Figure 1 presents the structure of the proposed architecture and the overall flow chart to
predict lower extremities and L5/S1 moments on sagittal plane.
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The proposed architecture consisted of 1 classification model that could classify the
lifting posture, and 2 regression models for the lower extremities and L5/S1 moments. For
each classification model, pre-processed pressure data acquired from the left insole of the
Pedar-X were used as input values, and the labeled index for lifting posture was used as
an output value [6]. Based on results of the classification model, dataset was classified into
squat data and stoop data. Pressure values and lower extremities and L5/S1 moments
were used as input and output for each regression model, respectively.

To evaluate the performance of the proposed model, a single machine learning model
composed of single LSTM was constructed, and the input and output values were as
follows. The pressure data obtained from the left insole of Pedar-X were used as input data,
and the predicted values were the sagittal moment of the left ankle, left knee, left hip, and
L5/S1 was used.

In this study, performance was evaluated through a 10-fold cross-validation. The
ratio of training, validation, and testing data was 80:10:10 (the number of training data
set: 384, the number of validation data set: 48, the number of test data set: 48). All models
were trained and tested using MATLAB R2020a version (The Mathworks, Inc., Natick, MA,
USA) and RTX 2080 Ti GPU.

2.4. Hyperparameter Optimization

Hyperparameters of all models used in this study were optimized using the Bayesian
optimization method, as an efficient method to find the optimal solution for a function
with a large amount of computation based on the Gaussian probability [38]. As an opti-
mization objective function of the proposed architecture, it is constructed based on the
error rate of the classification model and the rRMSE of the regression model, which is
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shown in Equations (1) and (2). In addition, the single LSTM model used rRMSE as the
objective function:

f (x) = min(error) (1)

error = w1x + w2y (2)

where f (x) is the optimization objective function and error is value calculated based on
the error rate of the classification model and the rRMSE of the regression model. The x is
the error rate of the classification model and y is the rRMSE of the regression model. In
addition, w1 and w2 presented as the weighted values of the error rate of the classification
model and the rRMSE value of the regression model, respectively. Weights are set as
0.7 and 0.3, respectively [39]. The maximum optimization iteration was set to 100. Table 1
presents the classification model’s hyperparameter and their ranges optimized by the
Bayesian optimization method. Table 2 shows the LSTM model’s hyperparameters and
ranges. Optimized results of the LSTM models are shown in Table 3.

Table 1. The classification model’s optimized hyperparameter and their ranges by the Bayesian optimization method.

ANN Hyperparameter Neuron Momentum Learning Rate Training Function

Range 20–200 10−5–10−2 10−6–10−2 trainscg, trainlm, traingdx
Selected Parameter 35 0.0036 4.45 × 10−5 trainscg

RF Hyperparameter Min Leaf Size Max Number Splits Split Criterion Variables’ Sample

Range 1–240 1–479 gdi, deviance, twoing 1–99
Selected Parameter 5 177 Deviance 99

SVM Hyperparameter Box Constraint Kernel Scale Kernel Function Polynomial Order

Range 10−5–10−3 10−5–103 Gaussian, linear,
polynomial 2–4

Selected Parameter 9.75 × 102 10−3 polynomial 2

Table 2. LSTM model’s hyperparameters and their structure selected by the Bayesian optimization method.

Phase Hyperparameter Range

Structure

Bi-LSTM layer1 99–990
Dropout layer 0.5–0.95

Bi-LSTM layer2 99–990
Dropout layer 0.5–0.95

Bi-LSTM layer3 99–990
Fully connected layer1 10–50

Dropout layer 0.5–0.95
Fully connected layer2 Fully connected layer1/2

Training

Momentum 0.5–0.95
L2 regularization factor 10−5–10−2

Initial learning rate 10−5–10−2

Input weights initializer Glorot, He, Narrow-normal
Gradient threshold method Global-l2norm, l2norm

Gradient threshold 1–6
Number of layers 1–3

Number of sensors selected 3–99
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Table 3. LSTM model’s structure and hyperparameters optimized by the Bayesian optimization method.

Phase Hyperparameter LSTM
ANN-LSTM RF-LSTM SVM-LSTM

Squat Stoop Squat Stoop Squat Stoop

Regression
Structure

Bi-LSTM layer1 Node 103 610 88 625 211 104 168
Dropout layer 0.172 0.120 - 0.101 - - 0.267

Bi-LSTM layer2
Node 103 439 - 387 - - 167

Dropout layer 0.172 0.1203 - 0.101 - - 0.267
Bi-LSTM layer3

node 31 316 - 240 - - 166

Fully connected layer1 43 20 50 26 36 17 31
Dropout layer 0.172 0.120 0.386 0.101 0.136 0.149 0.267

Fully connected layer2 22 10 25 13 18 9 16
Fully connected layer3 4 4 4 4 4 4 4

Training

Momentum 0.920 0.503 0.812 0.530 0.701 0.643 0.709
L2 regularization

factor 8.49 × 10−4 6.28 × 10−3 8.41 × 10−3 7.16 × 10−3 9.07 × 10−3 8.45 × 10−3 4.84 × 10−3

Initial learning rate 2.67 × 10−3 1.87 × 10−3 8.41 × 10−3 9.27 × 10−4 4.89 × 10−3 6.75 × 10−3 2.78 × 10−3

Input weights
initializer He Glorot Glorot Glorot Narrow-

normal Glorot Glorot

Gradient threshold
method l2norm Global-

l2norm
Global-
l2norm

Global-
l2norm

Global-
l2norm l2norm l2norm

Gradient threshold 2 1 5 1 3 1 4
Number of layers 3 3 1 3 1 1 3

2.5. Data Analysis

The classification model of symmetric lifting posture was evaluated for classification
accuracy rate. The performance of the regression model was evaluated with RMSE, Pearson
correlation coefficient (R), and rRMSE using moments of the lower extremities and L5/S1
obtained from the OTS as a reference system. RMSE, rRMSE, and R are calculated with
Equations (3)–(5), respectively:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi − y∗i

)2 (3)

R =
∑N

i=1(yi − yi)
(
y∗i − y∗i

)√
∑N

i=1(yi − yi)
2(y∗ i − y∗i

)2
(4)

rRMSE =

√
1
N ∑N

i=1
(
yi − y∗i

)2

max(yi)− min(yi)
× 100% (5)

where yi represents the actual value, yi
∗ represents the predicted value from the artificial

intelligence model, and N represents the length of 1 trial. In Equation (2), R represents
the value of the Pearson correlation coefficient. yi is the average of the actual values, y∗i
is the average of the values predicted by the artificial intelligence model, max(yi) is the
maximum value in 1 trial, and min(yi) = is the minimum value in 1 trial. One-way analysis
of variance (ANOVA) was performed to compare the accuracy of the single LSTM and the
proposed artificial intelligence model. After the analysis, post hoc Tukey’s method was
used. The significance level was set at p < 0.01. All statistics analyses were performed using
PASW Statistics 18 (Ver. 18, SPSS Inc., Chicago, IL, USA).

For moments obtained from the proposed model and the reference system, the maxi-
mum value among absolute values of moments was extracted for each trial. The error rate
between the extracted peak moment value of the proposed model and the reference system
was calculated using the following Equation (6):

Error rate(%) =
Peak Model − Peak re f

Peak re f
∗ 100% (6)
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where Peak Model was the peak value among absolute values of prediction values of the
artificial intelligence model, and Peak re f was the peak value among absolute values of the
reference moment. Error rate(%) meant the error rate between peak moment.

3. Results

Figure 2 presents results of feature selection on the number of sensors as input data
using the Bayesian optimization method. For single LSTM, ANN-LSTM, RF-LSTM and
SVM-LSTM models, 96, 96, 98 and 99 sensors were selected, respectively. Results of the
objective function at the time when the sensor was selected were 14.49, 15.38, 6.53 and 4.94,
respectively.
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Table 4 shows classification accuracies of ANN, RF, and SVM as motion classification
models of the proposed algorithm. Based on confusion matrix results of 10-fold cross-
validation, average accuracies of ANN, RF, and SVM were 83.54 ± 4.48, 91.67 ± 3.40,
and 94.00 ± 2.43%, respectively. There was a significant difference (p < 0.01) between the
accuracy of ANN, RF, and SVM models.

Table 4. Symmetric lifting task posture classification accuracy for three classification models.

1. ANN 2. RF 3. SVM ANOVA Post Hoc Test

Squat accuracy (%) 87.06 ± 9.11 91.36 ± 7.16 92.84 ± 6.00 - -
Stoop accuracy (%) 80.26 ± 5.67 92.15 ± 5.57 94.59 ± 2.93 - -
Total accuracy (%) 83.54 ± 4.48 91.67 ± 3.40 94.00 ± 2.43 F = 16.1 (p < 0.01) 2, 3 > 1

In Table 5, RMSE, rRMSE, and R of each model were calculated to evaluate the
performance of single LSTM, ANN-LSTM, RF-LSTM, and SVM-LSTM models. With the
squat posture, rRMSE (%) results of single LSTM, ANN-LSTM, RF-LSTM, and SVM-LSTM
were 9.38~18.64, 8.81~20.35, 8.06~16.33 and 8.44~14.03, respectively. With the stoop posture,
rRMSE (%) values were 9.26~18.70, 9.59~18.36, 7.91~15.36 and 8.02~13.73, respectively. In
both squat and stoop lifting tasks, the knee showed the highest rRMSE and a low correlation
coefficient while the hip joint showed the lowest rRMSE with a high correlation coefficient.
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Table 5. RMSE, rRMSE and R (correlation coefficients) values between calculated joint moment from optical tracking system and predicted joint moment with a hierarchical deep learning model.

Ankle Knee Hip L5S1

r RMSE
(N·m/BW)

rRMSE
(%) r RMSE

(N·m/BW)
rRMSE

(%) r RMSE
(N·m/BW)

rRMSE
(%) r RMSE

(N·m/BW)
rRMSE

(%)

Squat

LSTM 0.85 0.056 ± 0.007 12.19 ± 3.21 0.83 0.150 ± 0.010 18.64 ± 2.18 0.94 0.127 ± 0.017 9.38 ± 1.40 0.96 0.189 ± 0.021 9.95 ± 0.97
NN-LSTM 0.87 0.052 ± 0.005 11.72 ± 2.04 0.79 0.167 ± 0.033 20.35 ± 5.80 0.95 0.121 ± 0.016 8.81 ± 3.28 0.94 0.174 ± 0.024 9.23 ± 1.44
RF-LSTM 0.92 0.050 ± 0.004 10.69 ± 0.86 0.87 0.126 ± 0.032 16.33 ± 2.97 0.96 0.108 ± 0.024 8.06 ± 1.51 0.95 0.167 ± 0.033 8.50 ± 1.87

SVM-LSTM 0.93 0.048 ± 0.007 10.48 ± 1.65 0.91 0.121 ± 0.023 14.03 ± 3.23 0.96 0.112 ± 0.030 8.08 ± 1.49 0.95 0.167 ± 0.026 8.44 ± 1.30

Stoop

LSTM 0.94 0.052 ± 0.005 11.58 ± 1.75 0.88 0.155 ± 0.032 18.70 ± 4.01 0.94 0.128 ± 0.017 9.26 ± 1.40 0.94 0.194 ± 0.029 10.04 ± 0.75
NN-LSTM 0.86 0.059 ± 0.009 12.66 ± 3.21 0.83 0.153 ± 0.042 18.36 ± 4.32 0.95 0.136 ± 0.043 9.59 ± 1.67 0.93 0.206 ± 0.036 11.20 ± 2.14
RF-LSTM 0.93 0.049 ± 0.007 10.12 ± 2.36 0.90 0.120 ± 0.034 15.36 ± 3.11 0.96 0.102 ± 0.023 7.91 ± 1.90 0.95 0.176 ± 0.027 9.64 ± 1.82

SVM-LSTM 0.94 0.048 ± 0.009 10.22 ± 3.17 0.92 0.117 ± 0.031 13.73 ± 2.51 0.96 0.113 ± 0.028 8.02 ± 2.47 0.96 0.173 ± 0.021 8.81 ± 1.17
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Figure 3 shows performances of single LSTM, ANN-LSTM, RF-LSTM, and SVM-LSTM
models by rRMSE. The SVM-LSTM model showed significant differences (p < 0.01) in ankle
and L5S1 joints compared with single LSTM and ANN-LSTM models. In addition, for the
knee joint, the SVM-LSTM model showed a significant difference (p < 0.01) compared with
all other models. Compared to the single LSTM model, the SVM-LSTM model showed
approximately 2.19%, 4.68%, 1.23% and 1.35% rRMSE reductions for the ankle, knee, hip,
and L5/S1, respectively. In particular, the knee joint moment showed the largest decrease
in rRMSE compared to other joints.
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Figure 4 shows the moment predicted by the single LSTM model, the SVM-LSTM
model and representative values of the reference moment classified according to posture.
The x-axis is the time normalized to 100% during the lifting task and the y-axis is the
moment normalized by the weight of each subject. (−) on the y-axis means flexion moment
and (+) refers to the extension moment. During the lifting task, changes in the moment of
the knee joint showed a different tendency from those of the ankle, hip joint, and lumbar
joint. In the squat posture, the peak extension moment at the knee joint occurred at the
beginning of the lifting motion and showed a pattern of decreasing close to zero. In stoop
posture, the peak flexion moment occurred initially, and the flexion moment tended to
decrease as the lifting task progressed.

Table 6 shows the reference peak moment, the predicted peak value of the SVM-LSTM
model, and the error rate of the peak moment of the lower extremity and L5/S1. Error rates
were 5.20 ± 4.85 (%), 8.77 ± 6.45 (%), 3.20 ± 2.33 (%), and 5.19 ± 3.18 (%) for the ankle,
knee, hip and L5/S1, respectively.

Table 6. Reference peak moment calculated from OTS, peak moment predicted from SVM-LSTM
model, and error rate between these values.

Ankle Knee Hip L5S1

Reference peak
moment (N·m/BW) 0.706 ± 0.034 0.768 ± 0.041 1.399 ± 0.037 2.504 ± 0.047

Predicted peak
moment (N·m/BW) 0.738 ± 0.036 0.735 ± 0.067 1.414 ± 0.031 2.377 ± 0.087

Error rate (%) 5.20 ± 4.85 8.77 ± 6.45 3.20 ± 2.33 5.19 ± 3.18
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4. Discussion

In this study, a novel machine learning-based protocol was proposed to predict lower
extremity and L5/S1 moments during symmetrical lifting using plantar pressure as an
input. This study designed a structure that combines SVM, a classifier, and LSTM model,
one of the time-series prediction deep learning models. The performance of the SVM-LSTM
model showed rRMSE (%) of 8.06~13.88, and peak moment error rate (%) of 3.20~8.77
(Tables 3 and 5).

Recently, cases of estimating the moment of the L5/S1 during lifting using wearable
sensor data and human body modeling showed rRMSE of 8~10% and peak moment
error rate of 5~10% by wearing 6~17 IMU sensors and two portable force plate or insole
sensors [19,38]. These could be judged to have similar accuracy to results of this study,
which estimated the lower extremity and L5/S1 moments during symmetrical lifting using
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2 insole sensors and the SVM-LSTM hierarchical machine learning model. According
to Matijevich (2020), the architecture presented in this study is a system that wears two
insoles [17]. It is expected to show higher applicability to the working environment
than a system that wears 6–19 wearable sensors (e.g., IMU sensors) [17]. Kipp et al.
(2018) developed a model that predicts the lower extremity moment during weightlifting
operation using artificial intelligence and optical marker trajectories. As a result, the
error rate of peak moment was about 5 to 16% [40]. Considering the similarity between
weightlifting and symmetric lifting, the deep learning-based model proposed in this study
showed similar results with a small number of sensors, indicating that the model proposed
in this study could be more applicable to the field in terms of convenience than models
proposed in previous studies (Table 3).

The proposed deep learning-based moment prediction model consists of a hierarchical
structure, which is a step of classifying posture (stop and square) and a step of estimating
the moment. Collected data were analyzed by dividing the lifting operation into three
types of conditions (speed, weight, and posture). As a result, the foot pressure which was
the input of the proposed model showed a clear difference according to posture in the
cumulative pressure distribution of 1 trial based on the result classification model composed
the posture among three types of conditions as the output of the classification model [41].
According to results of this study, the knee joint showed a high rRMSE (4.68%) reduction
compared to other joints for the predicted moment between the SVM-LSTM model and the
single LSTM model. Khashei et al. (2012) have reported that the hierarchical architecture is
highly likely to improve the performance due to reduced data complexity [42]. However,
in the case of the ANN-LSTM model compared with the single LSTM model, rRMSE and
correlation coefficient showed no significant performance improvement. This was because
classification accuracy of ANN was 83.5 ± 4.5%, which was low compared to accuracies of
other RF and SVM classification models. This might be due to the accumulation of errors
due to misclassification of the ANN classification model. Hierarchical architecture can be
applied as a method to improve performance when a single model does not show high
performance due to complexity of input/output data. However, errors can accumulate
depending on the performance of the classification model. Thus, it is necessary to consider
the performance of the classification model.

In this study, Bayesian optimization was used to obtain the optimal sensor location
information from the acquired 99 pressure sensor data. According to a previous study, the
main change direction of the pressure center of the foot during symmetric lifting was the
anterior/posterior direction, and a constraint was given to select the number of at least
1 sensor in each area to select the sensor position for the entire range of the foot [43]. When
the subject wears an insole sensor, the position and absolute value at which the sensor is
pressed are different depending on the position of the sensor and the size of the foot. Thus,
a large number of sensors was selected. Additionally, in this study, the area of the foot was
divided into 3 zones (forefoot, midfoot, rearfoot) and the sensor position was extracted for
each area. In the case of a different task, for example, an asymmetric lifting, it is necessary
to consider a method of selecting an optimal position by setting the region differently
according to the position of the pressed sensor. As an objective function, the error rate of
the classification model and the rRMSE of the regression model were calculated by giving
7 and 3 weights, respectively. This is because, in the case of a model using a hierarchically
structured protocol such as in this study, the error in the classification model has a structure
in which the error in the subsequent regression model can be accumulated. To minimize
the misclassification rate, the ratio of 7 to 3 was chosen. However, if weights of the objective
function for the classification model and the regression model are different, the selection of
features might be different.

The purpose of this study is to propose a system that can predict the joint moments of
the lower extremities and L5/S1 in the workplace. The proposed system is meaningful in
overcoming the spatial constraints of existing studies. It is considered that this system can
be applied to workers who are engaged in an irregular working environment. For example,
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paramedics show a 13 times higher risk of musculoskeletal disorders than other medical
workers, mainly due to frequent lifting of patients [44]. In addition, agricultural workers are
also exposed to musculoskeletal disorders caused by lifting work, carrying heavy objects,
or improper posture [45,46]. Based on the system proposed in this study, a prediction of the
lower extremities and L5/S1 joint moment might provide a continuous health notification
for workers who do not have an irregular working environment. Therefore, the risk
of musculoskeletal disorders can be reduced by applying the health notification which
includes the system proposed in this research.

This study has several limitations. First, the data used for training the model consisted
of only the data of young adult males. However, to the best of our knowledge, this is the
first study to predict moments of the lower extremities and lumbar spine during work-
related lifting motions using insole sensors and machine learning. In future research, it
is necessary to include the various age groups in order to increase the usefulness of the
model. Second, a model was constructed for limiting the lifting task. In this study, models
were constructed for the squat and stoop posture during symmetric lifting. In future
research, it is necessary to construct a generalized model for lifting tasks by adding data
to symmetric lifting posture such as free lifting, semi-squat, and asymmetric lifting tasks.
Lastly, a limitation of this study is that it was conducted with limited number of healthy
adults. The subjects’ musculoskeletal disorders were defined by their opinion without any
medical history confirmation. Consequently, laterality or underlying physical condition
was not considered. In future study, obtaining more data while considering laterality and
medical history is necessary to construct a more robust machine learning model.

In conclusion, we proposed an architecture that could predict the lower extremity
and L5/S1 moments as plantar pressure during symmetric lifting. In order to improve
the performance of the machine learning model, a hierarchical architecture was presented
and the performance was evaluated by comparing with the reference value. The accuracy
between the single LSTM model and each proposed architecture was then compared. The
hierarchical architecture was divided into two stages. The first stage consists of classifying
the posture by constructing a motion classification model and the second stage predicted
the lower extremity and L5/S1 moment using the data classified by posture. Among
classification models of the proposed architecture, SVM showed the highest classification
accuracy and the SVM-LSTM model showed an rRMSE of 8.06~13.88%, and an error rate
of a peak moment of 3.20~8.77%. This is similar to the case of estimating the moment using
a wearable system. Therefore, the protocol for estimating the lower extremity and L5/S1
moment during lifting using the insole system and artificial intelligence proposed in this
study provides a starting point for developing a system for estimating the lower extremity
and L5/S1 moment during lifting that can be applied to future workplace environments.
This novel study has the potential to precisely design feedback iterative control system of
an exoskeleton for the appropriate generation of an actuator torque.
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