TORIC RICHARDSON VARIETIES AND BRUHAT INTERVAL POLYTOPES

EUNJEONG LEE^{*}, MIKIYA MASUDA, AND SEONJEONG PARK

The standard action of a complex torus $T = (\mathbb{C}^*)^n$ on the complex vector space \mathbb{C}^n induces an action of T on the full flag variety $\mathcal{F}\ell(\mathbb{C}^n)$. The set of fixed points can be identified with the set \mathfrak{S}_n of permutations on $\{1, 2, \ldots, n\}$. For given permutations v and w in \mathfrak{S}_n with $v \leq w$, we define the Richardson variety X_w^v , which is a T-invariant subvariety of the full flag variety $\mathcal{F}\ell(\mathbb{C}^n)$ and the fixed point set is identified with permutations $\{z \in \mathfrak{S}_n \mid v \leq w \leq w\}$. The moment map image of the Richardson variety X_w^v is a Bruhat interval polytope, which is the convex hull of points $(z(1), \ldots, z(n)) \in \mathbb{Z}^n$ for permutations $v^{-1} \leq z \leq w^{-1}$. We first observe the relation between Richardson varieties and Bruhat interval polytopes. Then, we study sufficient condition on v and w such that the Richardson variety X_w^v to be a smooth toric variety. In particular, we show that smooth toric Richardson varieties are Bott manifolds. This is joint work with Mikiya Masuda and Seonjeong Park.

Email address: eunjeong.lee@ibs.re.kr