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Stieltjes moment sequences

A sequence (an)n≥0 is a Stieltjes moment sequence if it has the

form

an =

∫ ∞

0

xndµ(x)

where µ is a nonnegative measure on [0,∞).
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Other Characterizations

(I) A sequence (an)n≥0 is a Stieltjes moment sequence if and only if

the determinants of the matrices [ai+j ]0≤i,j≤n and [ai+j+1]0≤i,j≤n

are positive for all n ≥ 0
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Total Positivity

Let A = [an,k]n,k≥0 be a finite or infinite matrix.

We say that A is totally positive of order r if all its minors of

order 1, 2, . . . , r are nonnegative.

We say that A is totally positive if it is totally positive of order r

for all r ≥ 1
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A third characterization

Given a sequence α = (an)n≥0, we define the Hankel matrix of α,

H(α), by

H(α) = [ai+j ]i,j≥0 =





















a0 a1 a2 a3 · · ·

a1 a2 a3 a4 · · ·

a2 a3 a4 a5 · · ·

a3 a4 a5 a6 · · ·
...

...
...

...
. . .





















.

Then α is a Stieltjes moment sequence if and only if H(α) is TP.
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Let R denote the real numbers and x = x1, . . . , xn.

For any polynomial f(x) =
∑

ci1,...,in
xi1

1 xi2
2 . . . xin

n in R[x], we let

f(x)|
x

i1
1 x

i2
2 ...x

in
n

= ci1,...,in
denote the coefficient of xi1

1 xi2
2 . . . xin

n in

f(x).

We say that f(x) is x-nonnegative, written f(x) ≥x 0, if

f(x)|
x

i1
1 x

i2
2 ...x

in
n

≥ 0 for all i1, . . . , in.
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Let M = [mn,k(x)]n,k≥0 be a finite or infinite matrix of

polynomials in R[x].

We say that M is x-totally positive of order r (x-TPr) if all its

minors of order 1, 2, . . . , r are polynomials in x with nonnegative

coefficients.

We say M is x-totally positive (x-TP ) if it is x-totally positive

of order r for all r ≥ 1.
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Given a sequence α = (ak(x))k≥0 of polynomials in R[x], we define

the Hankel matrix of α, H(α,x), by

H(α,x) = [ai+j(x)]i,j≥0 =





















a0(x) a1(x) a2(x) a3(x) · · ·

a1(x) a2(x) a3(x) a4(x) · · ·

a2(x) a3(x) a4(x) a5(x) · · ·

a3(x) a4(x) a5(x) a6(x) · · ·
...

...
...

...
. . .





















.

Then we say that α is a Stieltjes moment sequence of

polynomials if and only if H(α,x) is x-TP .

In the case where n = 1 so that we are considering polynomials in a

single variable, our definition coincides with the definition of

Stieltjes moment sequences of polynomials as defined by Wang and

Zhu (2016)
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Catalan Type numbers (Aigner 1999)

Let σ = (sk)k≥0 and τ = (tk+1)k≥0 be two sequences of

nonnegative numbers. Then define an infinite lower triangular

matrix A := Aσ,τ = [an,k]n,k≥0 where the an,ks are defined by the

recursions

an+1,k = an,k−1 + skan,k + tk+1an,k+1 (1)

subject to the initial conditions that a0,0 = 1 and an,k = 0 unless

n ≥ k ≥ 0.
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Aigner called Aσ,τ the recursive matrix corresponding to (σ, τ)

and he called the sequence (an,0)n≥0, the Catalan-like numbers

corresponding to (σ, τ).

Recently, Liang Mu, and Wang (2016) showed that many

Catalan-like numbers are Stieltjes moment sequences by proving

that the Hankel matrix of the sequence (an,0)n≥0 is totally positive.

Such examples include the Catalan numbers, the Bell numbers, the

central Delannoy numbers, the restricted hexagonal numbers, the

central binomial coefficients, and the large Schröder numbers.
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q-Aigner Sequences (Zhu 2013)

Suppose that we are give three sequence of polynomials over R

with non-negative coefficients

π = (rk(q))k≥1, σ = (sk(q))k≥0, and τ = (tk+1(q))k≥0.

Then we define a lower triangular matrix of polynomials

M(q) := Mπ,σ,τ (q) = [mn,k(q)]0≤k≤n

where the mn,k(q) are defined by the recursions

mn+1,k(q) = rk(q)mn,k−1(q)+sk(q)mn,k(q)+tk+1(q)mn,k+1(q) (2)

subject to the initial conditions that m0,0(q) = 1 and mn,k(q) = 0
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Liu and Wang (2007) defined a sequence of polynomials (fn(q))n≥0

over R to be q-log convex (q-LCX) if for all n ≥ 1,

(fn(q))2 ≥q fn−1(q)fn+1(q) (3)

and defined a sequence of polynomials (fn(q))n≥0 to be strongly

q-log convex (q-SLCX) if for all n ≥ m ≥ 1,

fn(q)fm(q) ≥q fn−1(q)fm+1(q). (4)

Theorem 0.1. Zhu (2013) A sequence of polynomials

(mn,0(q))n≥0 is a q-SLCX sequence of polynomials if for all k ≥ 0,

sk(q)sk+1(q) − tk+1(q)rk+1(q) ≥q 0.
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Suppose that a and b are nonnegative real numbers and rk(q) = 1

for k ≥ 1, s0(q) = q2 and sk(q) = 1 + q2 + a ∗ qb for k ≥ 1, and

t1(q) = q4 and tk(q) = q2 + q4 for k ≥ 2.

It is easy to check that for all k ≥ 0,

sk(q)sk+1(q) − tk+1(q)rk+1(q) ≥q 0. First one can compute that

m0,0(q) = 1,

m1,0(q) = q2,

m2,0(q) = q4 + 4q6 + aq4+b,

m3,0(q) = q4 + 5q6 + 9q8 + 2aq4+b + 4aq6+b + a2q4+2b, and

m4,0(q) = q4 + 8q6 + 20q8 + 21q10 + 3aq4+b + 13aq6+b +

15aq8+b + 3a2q4+2b + 5a2q6+2b + a3q4+3b.
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Then one can compute that

det

















m0,0(q) m1,0(q) m2,0(q)

m1,0(q) m2,0(q) m3,0(q)

m2,0(q) m3,0(q) m4,0(q)

















=

−q8−4q10+6q12+36q14+27q16−64q18−3aq8+b−2aq10+b+27aq12+b+

35aq14+b−48aq16+b−3a2q8+2b+5a2q10+2b+14a2q12+2b−12a2q14+2b−

a3q8+3b + 3a3q10+3b − a3q12+3b

which is not a polynomial in q with nonnegative coefficients for all

integers a, b ≥ 0.
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Wang and Zhu (2016) showed that many of the special sequences

considered by Zhu are in fact Stieltjes moment sequences of

polynomials over q.

(1) The Bell polynomials Bn(q) =
∑n

k=0 S(n, k)qk when rk(q) = 1,

sk(q) = k + q, and tk(q) = kq. Here S(n, k) is the Stirling number

of the second kind which counts the number of set partitions of

{1, . . . , n} into k parts.

(2) The Eulerian polynomials An(q) =
∑n

k=0 A(n, k)qk when

rk(q) = 1, sk(q) = (k + 1)q + k, and tk(q) = k2q. Here A(n, k) is

the number of permutations of n with k descents.

(3) The q-Schröder numbers, rn(q) =
∑n

k=0
1

k+1

(

2k
k

)(

n+k
n−k

)

qk when

rk(q) = 1, s0(q) = 1 + q, sk(q) = 1 + 2q for k ≥ 1, and

tk(q) = q(1 + q).
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(4) The q-central Delannoy numbers Dn(q) =
∑n

k=0

(

n+k
n−k

)(

2k
k

)

qk

when rk(q) = 1, sk(q) = 1 + 2q, t1(q) = 2q(q + 1), and

tk(q) = q(1 + q) for k > 1.

(5) The Narayana polynomials Nn(q) =
∑n

k=1
1
n

(

n
k

)(

n
k−1

)

qk when

rk(q) = 1, s0(q) = q, sk(q) = 1 + q for n ≥ 1, and tk(q) = q.

(6) The Narayana polynomials Wn(q) =
∑n

k=0

(

n
k

)2
qk of type B

when rk(q) = 1, sk(q) = 1 + q, t1(q) = 2q, and tk(q) = q for k > 1.
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Multivariate Aigner Sequences.

Suppose that we are given three sequences of polynomials over R

with nonnegative coefficients

π = (rk(x))k≥1, σ = (sk(x))k≥0, and τ = (tk+1(x))k≥0.

Then we define a lower triangular matrix of polynomials

M(x) := Mπ,σ,τ (x) = [mn,k(x)]0≤k≤n

where the mn,k(x) are defined by the recursions

mn+1,k(x) = rk(x)mn,k−1(x) + sk(x)mn,k(x) + tk+1(x)mn,k+1(x)

subject to the initial conditions that m0,0(x) = 1 and mn,k(x) = 0

unless 0 ≤ k ≤ n.
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Wieghted Motzkin Paths

A Motzkin path is path that starts at (0, 0) and consist of three

types of steps, up-steps (1, 1), down-steps (1,−1), and level-steps

(1, 0). We let Mn,k denote the set all paths that start at (0, 0), end

at (n, k), and stays on or above the x-axis.

We weight

an up-step that ends at level k with rk(x),

a level-step that ends at level k with sk(x), and

a down-step that ends at level k with tk+1(x).
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x  , x  ,  ... , x  
1 2 n(                           )

x  , x  ,  ... , x  
1 2 n(                           )

k
s

x  , x  ,  ... , x  
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t

k
r

Figure 1: The weight of steps in Motzkin paths

Given a path P in Mn,k, we let the weight of P , w(P ), equal the

product of all the weights of the steps in P . Then if we let

mn,k(x) =
∑

P∈Mn,k

w(P ),

it is easy to see that the mn,k(x) satisfy the our recursions
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Theorem 0.2. Let J = J (π,σ,τ) be the tridiagonal matrix

J =























s0(x) r1(x) 0 . . . 0

t1(x) s1(x) r2(x)
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . rn−1(x)

0 . . . 0 tn−1(x) sn−1(x)























where σ = (si(x))i≥1, π = (ri(x))i≥0, and τ = (ti+1(x))i≥0 are

sequences of non-zero polynomials over R with non-negative

coefficients. If the coefficient matrix J is x-totally positive, then the

x-Catalan-like numbers mn,0(x) corresponding to (π, σ, τ) form a

Stieltjes moment sequence of polynomials.
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Lemma 0.3. Suppose that A = [ai,j(x)]i,j=1,...,n is triadiagonal

matrix of non-negative polynomials in x over R. Then A is x-TP if

and only if all of its consecutive principle minors are polynomials

in x with non-negative coefficients.
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Lemma 0.4. Let J = J (π,σ,τ) be the tridiagonal matrix

J =























s0(x) r1(x) 0 . . . 0

t1(x) s1(x) r2(x)
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . rn−1(x)

0 . . . 0 tn−1(x) sn−1(x)























where σ = (si(x))i≥1, π = (ri(x))i≥0, and τ = (ti+1(x))i≥0 are

sequences of non-zero polynomials over R with non-negative

coefficients such that
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1. s0(x) ≥ 1,

2. si(x)si+1(x) − ti+1(x)ri+1(x) ≥x 0 for all i ≥ 0,

3. si+1(x) − ti+1(x)ri+1(x) ≥x 0 for all i ≥ 0, and

4. si+1(x) − ti+1(x)ri+1(x) − 1 ≥x 0 for all i ≥ 0.

Then A is x-TP.
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Lemma 0.5. Let

(b1(x1, . . . , xn), b2(x1, . . . , xn), . . .) and

(c1(x1, . . . , xn), c2(x1, . . . , xn), . . .)

be sequences of polynomials in x = (x1, . . . , xn) with non-negative

coefficient over R. Then the tridiagonal matrix

Jb,c =

















b1(x) + c1(x) 1

b2(x)c1(x) b2(x) + c2(x) 1

b3(x)c2(x) b3(x) + c3(x)
. . .

. . .
. . .

















is x-TP.
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Given a polynomial a(x1, . . . , xn) =
∑

(i1,...,in)∈I ci1,...,in
xi1

1 · · ·xin
n

where I is finite index set and ci1,...,in
6= 0 for all (i1, . . . , in) ∈ I,

we let the degree of a(x1, . . . , xn), deg(a(x1, . . . , an)), equal

max({i1 + · · · + in : (i1, . . . , in) ∈ I}. We say that a(x1, . . . , xn) is

homogeneous if of degree n if i1 + · · · + in = n for all

(i1, . . . , in) ∈ I and is inhomogeneous otherwise. If a(x1, . . . , xn)

had degree n, then we let

Hx0(a(x1, . . . , xn)) = xn
0a

(

x1

x0
,
x2

x0
, . . . ,

xn

x0

)

.

For example, if a(x1, x2) = 1 + x1 + x1x2 + x3
1, then

Hx0
(a(x1, x2)) = x3

0

(

1 +
x1

x0
+

x1

x0

x2

x0
+

x1

x0

x1

x0

x1

x0

)

= x3
0+x0x1x2+x3

1.

Clearly for any polynomial a(x1, . . . , xn) had degree n,

Hx0(a(x1, . . . , xn)) is a homogeneous polynomial.
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Theorem 0.6. Suppose that

α = (a0(x1, . . . , xn), a1(x1, . . . , xn), a2(x1, . . . , xn), . . .) is a Stieltjes

moment sequence of polynomials such that for all n ≥ 0,

deg(an(x1, . . . , xn)) = n. Then Hx0(α) =

(Hx0(a0(x1, . . . , xn)), Hx0(a1(x1, . . . , xn)), Hx0(a2(x1, . . . , xn)), . . .)

is a Stieltjes moment sequence of polynomials.
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Example 1.

Let π = (r1(q), r2(q), r3(q), . . .) = (1, 1, 1, . . .),

σ = (s0(q), s1(q), s2(q), . . .) = (1, 1 + q, 1 + q, . . .) and

τ = (t1(q), t2(q), t3(q), . . .) = (q, q, q, . . .). It is easy to check that

these sequences satisfy the hypothesis of Lemma 0.4.

a0,0(q) = 1,

an+1,0(q) = an,0(q) + qan,1(q) for n ≥ 1, and

an+1,k(q) = an,k−1(q) + (1 + q)an,k(q) + qan,k+1(q) for 1 ≤ k ≤ n.

where an,k(q) = 0 unless n ≥ k ≥ 0.

an,k(q) as the sum of the weights of Motzkin paths that start at

(0, 0) and end at (n, k) where the weights of up-steps are 1, the

weights of down-steps are q and the weights of level-steps are 1 at

level 0 and 1 + q at levels k > 0.
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For example, if A(q) = [an,k(q)], then

A(q) =





















1

1 1

1 + q 2 + q 1

1 + 3q + q2 3 + 5q + q2 3 + 2q 1
...

...
...

...
. . .





















.

Theorem 0.7. The sequence (an,0(q))n≥0 is a Stieltjes moment

sequence of polynomials.
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Riordan Arrays

A Riordan array, denoted by (d(x), h(x)), is an infinite lower

triangular matrix whose generating function of the kth column is

xkhk(x)d(x) for k = 0, 1, 2, . . ., where d(0) = 1 and h(0) 6= 0

A Riordan array R = [rn,k]n,k≥0 can be characterized by two

sequences (an)n≥0 and (zn)n≥0 such that for n, k ≥ 0,

r0,0 = 1, rn+1,0 =
∑

j≥0

zjrn,j , rn+1,k+1 =
∑

j≥0

ajrn,k+j . (5)

Call (an)n≥0 and (zn)n≥0 the A- and Z-sequences of R respectively.
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Let Z(x) =
∑

n≥0 znxn and A(x) =
∑

n≥0 anxn be the generating

functions of (zn)n≥0 and (an)n≥0 respectively.

Then

d(x) =
1

1 − xZ(xh(x))
, h(x) = A(xh(x)). (6)
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The recursive matrix R(a, b; c, e) = [rn,k]n,k≥0 defined by






r0,0 = 1, rn+1,0 = arn,0 + brn,1,

rn+1,k+1 = rn,k + crn,k+1 + ern,k+2.
(7)

The coefficient matrix of (7) is

J(p, q; s, t) =























a 1

b c 1

e c 1

e c
. . .

. . .
. . .























. (8)
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Then R(a, b; c, e) is a Riordan array with Z(x) = a + bx and

A(x) = 1 + cx + ex2. Let R(a, b; c, e) = (d(x), h(x)). Then by (6),

we have

d(x) =
1

1 − x(a + bxh(x))
, h(x) = 1 + cxh(x) + ex2h2(x).

It follows that

h(x) =
1 − cx −

√

1 − 2cx + (c2 − 4e)x2

2ex2

and

d(x) =
2e

2e − b + (bc − 2ae)x + b
√

1 − 2cx + (c2 − 4e)x2
.

Taking a = 1, b = q, c = 1 + q and e = q in (8), we obtain the

generating function of an,0(q) is

d(x, q) =
2

1 + (q − 1)x +
√

1 − 2(1 + q)x + (1 − q)2x2
.
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(1) When we set q = 1 in A(q), we obtain the Catalan triangle of

Aigner, OEIS [A039599]. an,0(1) = Cn where Cn = 1
n+1

(

2n
n

)

is the

n-th Catalan number. It follows that an,0(q) is a q-analogue of the

Catalan number Cn.

(2) When we set q = 2 in A(q), we obtain the triangle [A172094]

and an,0(2) are the little Schröder numbers Sn. It follows that

an,0(2q) is a q-analogue of n-th little Schröder number Sn.

(3) When we set q = 3, the sequence (an,0(3))n≥0 is sequence

[A007564]. It follows that an,0(3q) is a q-analogue of the sequence

[A007564].

(4) When we set q = 4, the sequence (an,0(4))n≥0 is sequence

[A059231]. It follows that an,0(4q) is a q-analogue of the sequence

[A059231].
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Example 2.

Let π = (r1(q), r2(q), r3(q), . . .) = (1, 1, 1, . . .),

σ = (s0(q), s1(q), s2(q), . . .) = (1 + q + q2, 1 + q + q2, 1 + q + q2, . . .)

and τ = (t1(q), t2(q), t3(q), . . .) = (q, q, q, . . .). It is easy to check

that these sequences satisfy the hypothesis of Lemma 0.4.

d0,0(q) = 1,

dn+1,0(q) = (1 + q + q2)dn,0(q) + qdn,1(q) for n ≥ 1, and

dn+1,k(q) = dn,k−1(q) + (1 + q + q2)dn,k(q) + qdn,k+1(q) for 1 ≤ k ≤ n

where dn,k(q) = 0 unless n ≥ k ≥ 0.

dn,k(q) as the sum of the weights of Motzkin paths that start at

(0, 0) and end at (n, k) where the weights of up-steps are 1, the

weights of down-steps are q, and the weights of level-steps

1 + q + q2.
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D(q) = [dn,k(q)], then

D(q) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1

1 + q + q2 1

1 + 3q + 3q2 + 2q3 + q4 2 + 2q + 2q2 1
“

1 + 6q + 9q2 + 10q3+ 3 + 8q + 9q2 + 6q3 + 3q4 3 + 3q + 3q2 1

6q4 + 3q5 + q6
”

.

.

.

.

.

.

.

.

.

.

.

.

.
.
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Theorem 0.8. The sequence dn,0(q) is a Stieltjes moment

sequence of polynomials.
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Taking a = 1 + q + q2, b = q, c = 1 + q + q2 and e = q in (8), we

obtain the generating function of dn,0(q) is

d(x, q) =
2

1 − (1 + q + q2)x +
√

1 − 2(1 + q + q2)x + ((1 + q + q2)2 − 4q)x2
.

In this case, the triangle D(1) is [A091965] and the first column

(dn,0(1))n≥0 is sequence [A002212]. dn,0(1) counts the number of

3-color Motzkin paths of length n and the number of restricted

hexagonal polynomials with n cells.
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Example 3.

Let π = (r1(p, q), r2(p, q), r3(p, q), . . .) = (1, 1, 1, . . .),

σ = (s0(p, q), s1(p, q), s2(p, q), . . .) = (1+p+q, 1+p+q, 1+p+q, . . .)

and τ = (t1(p, q), t2(p, q), t3(p, q), . . .) = (q, q, q, . . .). It is easy to

check that these sequences satisfy the hypothesis of Lemma 0.4.

c0,0(p, q) = 1,

cn+1,0(p, q) = (1 + p + q)cn,0(p, q) + qcn,1(p, q) for n ≥ 1, and

cn+1,k(p, q) = cn,k−1(p, q) + (1 + p + q)cn,k(p, q) + qcn,k+1(p, q) for 1 ≤ k ≤ n

where cn,k(p, q) = 0 unless n ≥ k ≥ 0.

cn,k(p, q) as the sum of the weights of Motzkin paths that start at

(0, 0) and end at (n, k) where the weights of up-steps are 1, the

weights of down-steps are q, and the weights of level-steps 1 + p + q.
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For example, if C(p, q) = [cn,k(p, q)], then

C(p, q) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1

1 + p + q 1

1 + 3p + 2q + 2pq + p2 + q2 2 + 2p + 2q 1
“

1 + 6p + 3q + 6p2 + 9pq + 3q2+ (3 + 8p + 6q+ 3 + 3p + 3q 1

p3 + 3p2q + 3pq2 + q3
”

3p2 + 6pq + 3q2
”

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
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Theorem 0.9. The sequence (cn,0(p, q))n≥0 is a Stieltjes moment

sequence of polynomials.

Taking a = 1 + p + q, b = q, c = 1 + p + q and e = q in (8), we

obtain the generating function of cn,0(p, q) is

d(x, p, q) =
2

1 − (1 + p + q)x +
√

1 − 2(1 + p + q)x + ((1 + p + q)2 − 4q)x2
.
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1. When we set p = q = 1 in (cn,0(1, 1))n≥0, we obtain the

1, 3, 10, 36, 137, . . . which is sequence [A002212]. Besides

counting 3-colored Motzkin path, it also the number of

restricted hexagonal polynomials with n-cells.

2. When we set p = 1 and q = 2 in (cn,0(p, q))n≥0, we obtain the

1, 4, 18, 88, 456, 2464, . . . which is sequence [A024175].

3. When we set p = 2 and q = 2 in (cn,0(p, q))n≥0, we obtain the

1, 4, 20, 112, 672, 4224, . . . which is sequence [A003645] whose

n-th term is 2nCn+1.
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Variations of Example 3

Define t
(s)
k (p, q) to be q if k ≤ s and p if k > s and let

τ (s) = (t
(s)
1 (p, q), t

(s)
2 (p, q), t

(s)
3 (p, q), . . .).

It is easy to see the sequences

π = (r1(p, q), r2(p, q), r3(p, q), . . .) = (1, 1, 1, . . .),

σ = (s0(p, q), s1(p, q), s2(p, q), . . .) = (1+p+q, 1+p+q, 1+p+q, . . .)

and τ (s) satisfy the hypothesis of Lemma 0.4 for all s.
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Then we can define the polynomials c
(s)
n,k(p, q) by

c
(s)
0,0(p, q) = 1,

c
(s)
n+1,0(p, q) = (1 + p + q)c

(s)
n,0(p, q) + t

(s)
1 (p, q)c

(s)
n,1(p, q) for n ≥ 1, and

c
(s)
n+1,k(p, q) = c

(s)
n,k−1(p, q) + (1 + p + q)c

(s)
n,k(p, q) + t

(s)
k+1(p, q)c

(s)
n,k+1(p, q)

for 1 ≤ k ≤ n where c
(s)
n,k(p, q) = 0 unless n ≥ k ≥ 0.

Theorem 0.10. For all s ≥ 0, (c
(s)
n,0(p, q))n≥0 is a Stieltjes moment

sequence of polynomials.
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One of the advantages of this set up is that we can set p = 0 in

such sequences. In particular, (c
(s)
n,0(0, q))n≥0 is a Stieltjes moment

sequence of polynomials. In such a situation, c
(s)
n,0(0, q) is the sum

over the weights of 2-colored Motzkin paths of height ≤ s. That is,

the level steps can be colored with color 0 which has weight 1 or

colored with color 1 which has weight q. The down-steps all have

weight q and the up-steps all have weight 1.
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Multivariate variations of Example 3.

Let x = (x1, . . . , xn) where n ≥ 3 and let 1 ≤ s1 < · · · < sn−1.

Then let ri(x) = 1 for all i ≥ 1,

si(x) = 1 + x1 + · · · + xn for all i ≥ 1, and

t
(s1,...,sn−1)
i (x) equal x1 if i ≤ s1, xj if sj−1 < i ≤ sj , and xn if

i > sn−1.

Then let π = (r1(x), r2(x), r3(x), . . .) = (1, 1, 1, . . .),

σ = (s0(x), s1(x), s2(x), . . .) and

τ (s1,...,sn−1) = (t
(s1,...,sn−1)
1 (x), t

(s1,...,sn−1)
2 (x), t

(s1,...,sn−1)
3 (x), . . .). It

is easy to check that for any 1 ≤ s1 < · · · < sn−1, these sequences

satisfy the hypothesis of Lemma 0.4.
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In this case, we are considering the polynomials defined by

c
(s1,...,sn−1)
0,0 (x) = 1,

c
(s1,...,sn−1)
n+1,0 (x) =

(1 + x1 + · · · + xn)c
(s1,...,sn−1)
n,0 (x) + t

(s1,...,sn−1)
1 (x)c

(s1,...,sn−1)
n,1 (x)

for n ≥ 1, and

c
(s1,...,sn−1)
n+1,k (x) =

c
(s1,...,sn−1)
n,k−1 (x) + (1 + x1 + · · · + xn)c

(s1,...,sn−1)
n,k (x) +

t
(s1,...,sn−1)
k+1 c

(s1,...,sn−1)
n,k+1 (x)

for 1 ≤ k ≤ n,

where c
(s1,...,sn−1)
n,k (x) = 0 unless n ≥ k ≥ 0.
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cn,k(x) as the sum of the weights of Motzkin paths that start at

(0, 0) and end at (n, k). where the weights of up-steps are 1, the

weights of down-steps ending at level k are t
(s1,...,sn−1)
k+1 (x), and the

weights of level-steps 1 + x1 + · · · + xn.
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In particular, we can interpret cn,0(x) as weighted sum over

n + 1-colored Motzkin paths. That is, the levels of the Motzkin

path can be colored with one of n+1 colors, namely, color 0 which

has weight 1, color i which has weight xi for i = 1, . . . , n, and the

down-steps that end at level k have weight t
(s1,...,sn−1)
k+1 (x).

Theorem 0.11. For all 1 ≤ s1 < · · · < sn−1,

(c
(s1,...,sn−1)
n,0 (x1, . . . , xn))n≥0 is a Stieltjes moment sequence of

polynomials.
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Example 4.

Let π = (r1(p, q, r), r2(p, q, r), r3(p, q, r), . . .) = (1, 1, 1, . . .),

σ = (s0(p, q, r), s1(p, q, r), s2(p, q, r), . . .) = (q+r, p+q+r, p+q+r, . . .)

and τ = (t1(p, q, r), t2(p, q, r), t3(p, q, r), . . .) =

(q(p + r), q(p + r), q(p + r), . . .).

i0,0(p, q, r) = 1,

in+1,0(p, q, r) = (q + r)in,0(p, q, r) + q(p + r)in,1(p, q, r) for n ≥ 1, and

in+1,k(p, q, r) = in,k−1(p, q, r) + (p + q + r)in,k(p, q, r) + q(p + r)in,k+1(p, q, r)

for 1 ≤ k ≤ n where in,k(p, q, r) = 0 unless n ≥ k ≥ 0.



Stieltjes moment sequences of polynomials 48

We can interpret in,k(p, q, r) as the sum of the weights of Motzkin

paths that start at (0, 0) and end at (n, k) where the weights of

up-steps are 1, the weights of the down-steps are q(p + r), and the

weights of the level steps at level 0 is q + r and the weights of the

level steps at level k ≥ 1 are p + q + r.
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For example, if I(p, q, r) = [in,k(q)], then

I(p, q, r) =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1

q + r 1

(pq + q2) + 3qr + r2 (p + 2q) + 2r 1
“

p2q + 3pq2 + q3)+ (p2 + 5pq + 3q2) + (3p + 8q)r + 3r2 (2p + 3q) + 3r 1

(4pq + 6q2)r + 6qr2 + r3

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

3

7

7

7

7

7

7

7

7
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7

7

7

5
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Theorem 0.12. The sequence (in,0(p, q, r))n≥0 is a Stieltjes

moment sequence of polynomials.
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(1) in,0(p, q, 0) =
∑n

k=1
1
k

(

n−1
k−1

)(

n
k−1

)

qkpn−k from which it follows

that in,0(1, 1, 0) = Cn where Cn = 1
n+1

(

2n
n

)

is the nth Catalan

number.

(2) in,0(p, q, 1) =
∑n

k=1
1

k+1

(

n+k
k

)(

n
k

)

qkpn−k from which it follows

that (in,0(1, 1, 1))n≥0 is sequence [A006318] which is the sequence

of large Schöoder numbers.

(3) We can show that (in,0(1, 1, r))n≥0 is the triangle [A060693].

(4) The sequence (in,0(1, 1, 2))n≥0 starts out

1, 3, 12, 57, 300, 1686, 9912, . . . which is sequence [A047891].

(5) The sequence (in,0(1, 2, 1))n≥0 starts out

1, 3, 13, 67, 381, 2307, 14598, . . . which is sequence [A064062] of the

generalized Catalan numbers.
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(6) The sequence (in,0(2, 1, 1))n≥0 starts out

1, 2, 7, 32, 166, 926, 5419, 32816, . . . which is sequence [A108524].

(7) The sequence (in,0(2, 2, 1))n≥0 starts out

1, 3, 15, 93, 645, 4791, 37275, . . . which is sequence [A103210].

(8) The sequence (in,0(2, 1, 2))n≥0 starts out

1, 3, 13, 71, 441, 2955, 20805, . . . which is sequence [A162326].

(9) The sequence (in,0(1, 2, 2))n≥0 starts out

1, 2, 7, 32, 166, 926, 5419, 32816, . . . which is sequence [A243626].

(10) The sequence (in,0(1, 1, 3))n≥0 starts out

1, 4, 20, 116, 740, 5028, 35700, . . . which is sequence [A082298].
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(11) The sequence (in,0(1, 3, 1))n≥0 starts out

1, 4, 22142, 1006, 7570, 59410, . . . is sequence [A243626].

(12) The sequence (in,0(3, 1, 1))n≥0 starts out

1, 2, 8, 44, 276, 1860, 13140, . . . does not appear in the OEIS.
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Example 5

For any σ = σ1 · · ·σn ∈ Sn, let (des)(σ) = |{i : σi > σi+1}| and

(ris)(σ) = |{i : σi < σi+1}|. Wang and Zhu (2016) proved that

(En(q))n≥0 is a Stieltjes moment sequence of polynomials where

En(q) =

n
∑

k=1

En,kqk =
∑

σ∈Sn

qdes(σ).

It follows from Theorem 0.6 that (En(p, q))n≥0 is a Stieltjes

moment sequence of polynomials where

En(p, q) =
n

∑

k=1

En,kqkpn−k =
∑

σ∈Sn

qdes(σ)pris(σ)+1.
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Let (b1(p, q), b2(p, q), b3(p, q), . . .) = (p, 2p, 3p, . . .) and

(c1(p, q), c2(p, q), c3(p, q), . . .) = (0, q, 2q, . . .). Using Lemma 0.5, we

see that Jb,c := Jπ,σ,τ where

π = (r1(p, q), r2(p, q), r3(p, q), . . .) = (1, 1, 1, . . .),

σ = (s0(p, q), s1(p, q), s2(p, q), . . .) = (p, 2p + q, 3p + 2q, . . .) and

τ = (t1(p, q), t2(p, q), t3(p, q), . . .) = (pq, 22pq, 32pq, . . .).

h0,0(p, q) = 1,

hn+1,0(p, q) = phn,0(p, q) + pqhn,1(p, q) for n ≥ 1, and

hn+1,k(p, q) = hn,k−1(p, q) + ((k + 1)p + kq)hn,k(p, q) + (k + 1)2pqhn,k+1(p, q)

for 1 ≤ k ≤ n where hn,k(p, q) = 0 unless n ≥ k ≥ 0.

hn,k(p, q) as the sum of the weights of Motzkin paths that start at

(0, 0) and end at (n, k) where the weights of up-steps are 1, the

weights of down-steps that ends at level k is (k + 1)2pq, and the

weights of the level steps at level k are (k + 1)p + kq.
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One can show that hn,0(p, q) = En(p, q).

Theorem 0.13. The sequence
(
∑

σ∈Sn
pris(σ)+1qdes(σ)

)

n≥0
is a

Stieltjes moment sequence of polynomials.


