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Stieltjes moment sequences

A sequence (a,)n>0 is a Stieltjes moment sequence if it has the

form
an:/ x"du(x)
0

where y is a nonnegative measure on |0, co).
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Other Characterizations

(I) A sequence (a,)n>0 is a Stieltjes moment sequence if and only if
the determinants of the matrices [a;+;]o<i j<n and [ait;t1]o<ij<n

are positive for all n > 0
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Total Positivity
Let A = [ay k]n k>0 be a finite or infinite matrix.

We say that A is totally positive of order r if all its minors of

order 1,2,...,r are nonnegative.

We say that A is totally positive if it is totally positive of order r
forall r > 1
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A third characterization

Given a sequence a = (a,)n>0, we define the Hankel matriz of «,
H(c), by

H(a) = [aijlijz0 = |02 a3 a1 as

Then « is a Stieltjes moment sequence if and only if H(«) is TP.
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Let R denote the real numbers and x = 1, ..., x,.

For any polynomial f(x) = ¢, 4 xz% ...z in R[x], we let

f(X)‘xilx;Q.ux%n = ¢;,....i, denote the coefficient of x{'z2* ...zl in

f(x).

We say that f(x) is x-nonnegative, written f(x) >, 0, if

fX)| i1 e 1o > 0forall ig,... ip.

1 2 oo n
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Let M = |my, 1(X)]n k>0 be a finite or infinite matrix of

polynomials in R[x].

We say that M is x-totally positive of order r (x-T'F,) if all its
minors of order 1,2,...,r are polynomials in x with nonnegative

coeflicients.

We say M is x-totally positive (x-T'P) if it is x-totally positive

of order r for all r > 1.
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Given a sequence o = (ax(x))r>0 of polynomials in R[x], we define
the Hankel matrix of «, H(a,x), by

ap(x) a1(x) ao(x) as(x)
a1(x) az(x) az(x) aq(x)
H(a,x) = [a45(%)]ij20 = [a2(X) as(x) as(x) as5(x)
as(x) a4(x) as(x) ag(x)

Then we say that a is a Stieltjes moment sequence of

polynomials if and only if H(«,x) is x-T'P.

In the case where n = 1 so that we are considering polynomials in a
single variable, our definition coincides with the definition of

Stieltjes moment sequences of polynomials as defined by Wang and
Zhu (2016)
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Catalan Type numbers (Aigner 1999)

Let 0 = (si)k>0 and 7 = (tx+1)k>0 be two sequences of
nonnegative numbers. Then define an infinite lower triangular
matrix A := A77 = |an k|n k>0 Where the a, s are defined by the
recursions

41k = Qn k—1 + Skln k + Ck+1Qn k41 (1)

subject to the initial conditions that ap o = 1 and a,, ; = 0 unless
n>k>0.
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Aigner called A%7 the recursive matrix corresponding to (o, 7)
and he called the sequence (ay 0)n>0, the Catalan-like numbers

corresponding to (o, 7).

Recently, Liang Mu, and Wang (2016) showed that many
Catalan-like numbers are Stieltjes moment sequences by proving
that the Hankel matrix of the sequence (a,,0)n>0 is totally positive.
Such examples include the Catalan numbers, the Bell numbers, the
central Delannoy numbers, the restricted hexagonal numbers, the
central binomial coeflicients, and the large Schroder numbers.
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g-Aigner Sequences (Zhu 2013)

Suppose that we are give three sequence of polynomials over R

with non-negative coefficients
T = (1£(q))k>1, 0 = (5k(q))k>0, and 7 = (tx+1(q))r>o0-
Then we define a lower triangular matrix of polynomials
M(q) :== M™77(q) = [Mn.x(q)]o<k<n
where the m,, 1(q) are defined by the recursions

mn—l—l,k(Q) — Tk(Q)mn,k—l(Q)+Sk(Q)mn,k(Q)+tk+1(Q)mn,k—|—1(Q) (2)

subject to the initial conditions that mg o(q) = 1 and m, (q) =0

11
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Liu and Wang (2007) defined a sequence of polynomials (f,,(q))n>0
over R to be ¢-log convex (¢-LCX) if for all n > 1,

(fa(@)* 24 fa—1(a) frs1(a) (3)

and defined a sequence of polynomials (f,(¢q))n>0 to be strongly
g-log convex (¢-SLCX) if for all n > m > 1,

fr(@) fim(@) 2¢ fr-1(qQ) frmr1(q)- (4)

Theorem 0.1. Zhu (2013) A sequence of polynomials
(Mn.0(q))n>0 is a ¢-SLCX sequence of polynomials if for all k > 0,

$k(q)Sk+1(q) — ter1(@)Try1(q) >4 0.

12
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Suppose that a and b are nonnegative real numbers and r(q) = 1
for k > 1, s0(q) = ¢° and s3(q) =14 ¢*> +ax* ¢’ for k> 1, and
t1(q) = ¢* and t1(q) = ¢* + ¢* for k > 2.

It is easy to check that for all £ > 0,
Sk(q)Sk+1(q) — tk+1(q)Tk+1(q) >4 0. First one can compute that

moo(q) = 1,

mio(q) = ¢,

mao(q) = ¢t + 4¢° + ag't?

msolq) = q¢*+5¢° +9¢% + 2a¢* " + 4a¢®T + a®¢* T, and
mao(q) = ¢*+8¢° +20¢° +21¢"° + 3ag** + 13a¢® " +

15aq8+b_|_3a2 4+2b_|_5a2 6+2b_|_a3q4+3b
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Then one can compute that

det

B =4 16¢12 436014 +27¢15 — 64418 —3ag3 T’ —2aq 0 +-27aq 20+

35aq14—|—b_48aq16—|—b_3a2q8+2b+5a2q10—|—2b+14a2q12—|—2b_12a2q14—|—2b_

_ g3q12+3

which is not a polynomial in ¢ with nonnegative coefficients for all

mo,0(q)
m1,0(q)

m2,0(q)

integers a, b > 0.

m1,0(q)
m2,0(q)
m3,0(q)

m2,0(q)
m3,0(q)
m4,0(q)

a3q8+3b i 3a3q10—l—3b

14
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Wang and Zhu (2016) showed that many of the special sequences
considered by Zhu are in fact Stieltjes moment sequences of

polynomials over g.

(1) The Bell polynomials B, (q) = >.;_, S(n, k)q" when r(q) = 1,
sk(q) =k + q, and ti(q) = kq. Here S(n, k) is the Stirling number
of the second kind which counts the number of set partitions of
{1,...,n} into k parts.

(2) The Eulerian polynomials A, (q) = >_,_, A(n, k)¢" when
ru(q) = 1, sp(q) = (k+ 1)qg + k, and t,(q) = k*q. Here A(n, k) is
the number of permutations of n with k£ descents.

(3) The g-Schréder numbers, 7,(q) = >p_ 747 (CF) (%) ¢* when

ri(q) =1, so(q) =1+ ¢q, sp(q) =1+ 2q for k > 1, and
tx(q) = q(1+q).
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(4) The g-central Delannoy numbers D,,(q) = >, _, (n+k) (% )qk
when r,(q) = 1, sx(q) = 1+ 2q, t1(q) = 2q(q+ 1), and
tk(q) = q(1+¢q) for k > 1.

(5) The Narayana polynomials N, (¢) = > 1_; = () (, )q when

ri(q) =1, s0(q) = ¢, sk(q) =1+ q for n > 1, and tx(q) =

(6) The Narayana polynomials W,,(¢) = >, _, (k)qu of type B
when r,(q) = 1, sk(q) =1+ q, t1(q) = 2q, and tx(q) = q for k > 1.
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Multivariate Aigner Sequences.

Suppose that we are given three sequences of polynomials over R

with nonnegative coefficients

T = (rk(X))k>1, 0 = (sk(X))k>0, and T = (tx41(x))k>0-

Then we define a lower triangular matrix of polynomials

M(x) = M™""(x) = [’mn,k(X)]o<k<n

where the m,, 1 (x) are defined by the recursions

M1,k (X) = 1 (X) M —1(X) + Sk (X) 1700, (X) + L1 (X) 1700, k41 (X)

subject to the initial conditions that mg ¢(x) = 1 and m,, ;(x) = 0
unless 0 < k < n.
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Wieghted Motzkin Paths

A Motzkin path is path that starts at (0,0) and consist of three
types of steps, up-steps (1, 1), down-steps (1, —1), and level-steps
(1,0). We let M,, . denote the set all paths that start at (0,0), end
at (n, k), and stays on or above the z-axis.

We weight

an up-step that ends at level k£ with r;(x),

a level-step that ends at level k with s;(x), and
a down-step that ends at level k£ with t;1(x).
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tk+1(x1 s Xy oo s Xpy)

~ \ level k
/ Sy (%5 %55 vy Xp)

ry (%, Xg5 wes Xp)

Figure 1: The weight of steps in Motzkin paths

Given a path P in M,, i, we let the weight of P, w(P), equal the
product of all the weights of the steps in P. Then if we let

mak(x)= Y w(P),

PEMn,k

it is easy to see that the m,, r(x) satisfy the our recursions
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Theorem 0.2. Let J = J™%7) be the tridiagonal matriz

so(x) r1(x) 0 . 0

T=1 ¢ 0
?“n_l(X)
0 0  tn_1(xX) sp_1(x)

where 0 = (5{(X))i>1, ™ = (ri(X))i>0, and 7 = (t;11(x))i>0 are
sequences of non-zero polynomaials over R with non-negative
coefficients. If the coefficient matriz J 1s x-totally positive, then the
x-Catalan-like numbers my, o(x) corresponding to (m,o,7) form a

Stieltjes moment sequence of polynomaials.
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Lemma 0.3. Suppose that A = |a; j(X)]i j=1,...n s triadiagonal
matriz of non-negative polynomials in x over R. Then A is x-TP if

and only if all of its consecutive principle minors are polynomials
in X with non-negative coefficients.

21
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Lemma 0.4. Let J = J™%7) be the tridiagonal matriz

_So(X) r1(x) 0 0 |
ti(x) s1(x) ra(x)
J=1 0 0
Tn_l(X)
0 0 tn—1(X) Sp_1(x)]

22

where 0 = (5;(x))i>1, ™ = (1i(X))i>0, and T = (t;+1(X))i>0 are
sequences of non-zero polynomials over R with non-negative
coefficients such that
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1. sp(x) > 1,

2. 8;(x)8;41(x) — tip1(x)ri11(x) >x 0 for all i > 0,
3. 8i11(x) — tin1 (X)r01(x) >x 0 for all i > 0, and
4. Sit1(x) —ti1(x)rip1(x) — 1 >4 0 for all i > 0.

Then A 1s x-TP.

23
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Lemma 0.5. Let

be sequences of polynomials in x = (x1, ..

(bl(xl, .o .,xn),bg(xl, .o .,xn), .o ) and

(c1(x1y. s xpn),ca(T1ye ey Tpn), .. .)

., Tn) with non-negative

coefficient over R. Then the tridiagonal matriz

18 x-TP.

b1(x) + 1 (%)
bo(x)c1 (%)

1
ba(x) + c2(x)

b3 (x)ca(x)

1

b3(x) + c3(x)

24
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Given a polynomial a(z1,...,Zn) = >, i er Ciyooiy T xln
where [ is finite index set and ¢;, .. ;. # 0 for all (i1,...,4,) € I,

we let the degree of a(x1,...,x,), deg(a(zy,...,a,)), equal
max({i1 + -+ ip : (i1,...,%,) € I}. We say that a(zq,...,x,) is
homogeneous if of degree n if i1 +--- +1,, = n for all
(i1,...,in) € I and is inhomogeneous otherwise. If a(x1,...,xy,)

had degree n, then we let

1 X2 I
H, (a(z1,...,2,)) = xja (x—o, x—o,...,x—z> :

For example, if a(xq,22) = 1+ 21 + 2122 + 7, then

L1 X1 T2 X1 X1 Iq
H, (a(z,22)) =25 [ 1+ == + + = To4+ToT To T,
Lo Lo Lo Lo Lo Lo

Clearly for any polynomial a(x1,...,x,) had degree n,

H, (a(zy1,...,x,)) is a homogeneous polynomial.
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Theorem 0.6. Suppose that

a = (agp(z1, ..

.,xn),al(xl,..

.,$n),a2($1,..

Ty, -

) is a Stieltjes

moment sequence of polynomaials such that for all n > 0,
. Ty)) =mn. Then Hy, (o) =

deg(an,(z1, - .
(}Jio(&o(fl,..

9 xn))a on (al(xla .

1s a Stieltjes moment sequence of polynomaials.

s Tn)), Hyg(a2(x1, ..oy 2p)), .- .)

26
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Example 1.
Let m = (r1(q),r2(q),r3(q),...) = (1,1,1,...),
o= (so(q),s1(q),s2(q),...) =(1,14+¢q,144¢q,...) and

T = (t1(q),t2(q),t3(q),...) = (q,q,q,...). It is easy to check that
these sequences satisty the hypothesis of Lemma 0.4.

a0,0(Q) — 17
an+1,0(9) = ano(q) +qan1(g) for n > 1, and
ant1.k(q0) = ank-1(q) + (1 + @)ank(q) + qanr+1(q) for 1 <k < n.

where a,, 1(q) = 0 unless n > k > 0.

an.k(q) as the sum of the weights of Motzkin paths that start at
(0,0) and end at (n, k) where the weights of up-steps are 1, the
weights of down-steps are ¢ and the weights of level-steps are 1 at
level 0 and 1 + ¢ at levels £ > 0.

27
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For example, if A(q) = [an 1(q)], then

1
1 1

14+3¢+q¢*> 3+5¢+q¢*> 3+2¢ 1

Theorem 0.7. The sequence (G, 0(q))n>0 is a Stieltjes moment

sequence of polynomials.
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Riordan Arrays

A Riordan array, denoted by (d(z), h(z)), is an infinite lower

triangular matrix whose generating function of the kth column is
*h*(z)d(x) for k =0,1,2,..., where d(0) = 1 and h(0) # 0

A Riordan array R = |1y k|n.x>0 can be characterized by two

sequences (G )n>0 and (2, )n>0 such that for n, k& > 0,

ro,0 = 1, 'n4+1,0 — E ZiTn,jy  Tn+1l,k+1 — E AiTn k+j- (5)
Jj=0 7=0

Call (ayn)n>0 and (z,)n>0 the A- and Z-sequences of R respectively.
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Let Z(x) =}, >0 2nz" and A(z) = ) -,anz" be the generating
functions of (2,)n>0 and (ay,)n>0 respectively.

Then

30
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The recursive matrix R(a,b;c,e) = [rp.x|n.k>0 defined by

roo =1, 7Tpy10=arpo+bry1,

I'n4+1,k+1 = Tn,k + Cln,k+1 + €rn,k+2-

The coefficient matrix of (7) is

a 1
b ¢ 1
J(p,q; 5,1) = e ¢ |1
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Then R(a,b;c,e) is a Riordan array with Z(z) = a + bx and
A(x) =1+ cx + ex®. Let R(a,b;c,e) = (d(z),h(x)). Then by (6),
we have

1
1 —xz(a+ bxh(x))’
It follows that

d(z) = h(z) =1+ cxh(z) + ex’h?(z).

1 —cx— /1 —2cx + (¢ — 4e)x?
2ex?

h(x) =

and
2e

d(z) =
2¢ — b+ (be — 2ae)x + by/1 — 2cx + (2 — 4e)x?

Taking a =1, b=¢q, c=1+ q and e = g in (8), we obtain the
generating function of a,, ¢(q) is

2

dl@,q) = 1+(q—1)x+\/1—2(1+q)x+(1—q)2x2'




STIELTJES MOMENT SEQUENCES OF POLYNOMIALS

(1) When we set ¢ =1 in A(q), we obtain the Catalan triangle of
Aigner, OEIS [A039599]. ay (1) = C), where C,, = %ﬂ (27,7:’) is the
n-th Catalan number. It follows that a, ¢(q) is a g-analogue of the

Catalan number C,,.

(2) When we set ¢ = 2 in A(q), we obtain the triangle [A172094]
and a, o(2) are the little Schréder numbers S,,. It follows that
an.0(2q) is a g-analogue of n-th little Schroder number S,,.

(3) When we set ¢ = 3, the sequence (a, 0(3))n>0 is sequence
[A007564]. Tt follows that a, ¢(3q) is a g-analogue of the sequence
[A007564].

(4) When we set ¢ = 4, the sequence (a, 0(4))n>0 is sequence
[A059231]. Tt follows that a, ¢(4q) is a g-analogue of the sequence
[A059231].

33
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Example 2

Let m = (r1(q),m2(q),r3(q),...) = (1,1,1,...),

o= (s0(q),51(q),52(q),...) = (L+q+¢* 1+q+¢ 1+q+4q*...)
and 7 = (t1(q),t2(q),t3(q),...) = (q,q,q,...). It is easy to check
that these sequences satisfy the hypothesis of Lemma 0.4.

doo(q) = 1,
dn10(0) = (1+q+¢°)dno(q) +qdn,i(q) for n > 1,and
Ang1,6(q) = dnp—1(q) + 1+ ¢+ ¢*)dnik(q) + qdnk+1(q) for 1 <k <mn

where d,, (q) = 0 unless n > k > 0.

dn.k(q) as the sum of the weights of Motzkin paths that start at
(0,0) and end at (n, k) where the weights of up-steps are 1, the
weights of down-steps are ¢, and the weights of level-steps
1+q+¢°
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D(q) = [dn,k(q)], then

1

14 g+ g2 1
14 3q +3q% +2¢% + ¢4 2 + 2q + 2¢2 1
D(¢) = | (1+6a+94%+10a3+  3+4+8¢+9¢%+6¢% +3¢% 3+3q+3¢% 1

6a* + 345 + 4%)

Theorem 0.8. The sequence d,, o(q) is a Stieltjes moment

sequence of polynomials.
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Takinga=1+qg+¢*>, b=q,c=1+q+¢* and e = ¢ in (8), we
obtain the generating function of d, ¢(q) is

d(x7Q) — ’

1—(1+qg+a)r+/1-20+q+¢®)z+ ((1+q+q?)? —4q)z2

In this case, the triangle D(1) is [A091965] and the first column
(dn.0(1))n>0 is sequence [A002212]. d,, o(1) counts the number of
3-color Motzkin paths of length n and the number of restricted

hexagonal polynomials with n cells.
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Example 3.
Let m = (Tl(pa Q)7T2(p7 Q)7T3(p7 Q)a e ) — (17 ]-7 17 .- ')7
o= (s0(p,q),51(p,9),82(p,q),.-.) = (I+p+q,1+p+q,1+p+g,...)

and 7 = (t1(p, q), t2(p, @), t3(p, q), - - ) = (4,4, g, ..). It is easy to
check that these sequences satisfy the hypothesis of Lemma 0.4.

CO,O(p7 — 17

q
cnt10(p,q) = (L+p+a)cno®,q) + qcni(p,q) for n > 1, and
q

)

)
Cnt1,k(0,0) = Cnk—1(0,0) + (1 +p+ q@)cn k(P q) + qcnr+1(p,q) for 1 <k <n
(p,

where ¢, 1 (p,q) = 0 unless n > k > 0.

cn.k (P, q) as the sum of the weights of Motzkin paths that start at
(0,0) and end at (n, k) where the weights of up-steps are 1, the
weights of down-steps are ¢, and the weights of level-steps 1 + p + gq.
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For example, if C(p, q) = |cn.k(p, q)], then

1

1+p—+gqg 1
1+ 3p + 2q + 2pg + p2 + ¢2 2 4 2p + 24 1
C(p.a)=| (1+6p+3a+6p?+9pq+3¢%+ (3 4 8p + 6q+ 3+3p+3q 1
p3+3p2q+3pq2+q3> 3p2+6pq+3q2)

Theorem 0.9. The sequence (¢, 0(p,q))n>0 s a Stieltjes moment

sequence of polynomials.

Takinga=1+p+q,b=q,c=1+p+qand e =¢qin (8), we
obtain the generating function of ¢, o(p, q) is

2
d(x,p,q) =

C1—(l4p+r+/1-20+p+qz+ (1+p+q)? —4q)z?
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1. When we set p=¢=11in (¢p0(1,1))n>0, we obtain the
1,3,10,36,137,... which is sequence [A002212]. Besides
counting 3-colored Motzkin path, it also the number of

restricted hexagonal polynomials with n-cells.

2. When we set p =1 and ¢ = 2 in (¢, 0(p, ¢) )n>0, We obtain the
1,4, 18, 88,456, 2464, . .. which is sequence [A024175].

3. When we set p =2 and ¢ = 2 in (¢, 0(p, ¢) )n>0, We obtain the
1,4,20,112,672,4224, ... which is sequence [A003645] whose

n-th term is 2"C\, 4.

39
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Variations of Example 3

Define t,(f)(p, q) to be q if Kk < s and p if £ > s and let

() = (117 (p,0), 157 (0, 0), 157 (9, 0), - ).
It is easy to see the sequences

™= (ri(p,q), r2(p,q), 73(P, @), ..) = (1,1,1,...),

o= (s0(p;q),51(p, ), 2(p;q),-..) = (1+p+q,1+p+q,1+p+g,..

and 7(%) satisfy the hypothesis of Lemma 0.4 for all s.

y

40
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Then we can define the polynomials cfi;g(p, q) by
(s)

comaq) = 1,
7(7,8411 omg) = (1 ‘|‘Z?+Q)C7({S>( )-|—t( )( q) ( q) forn > 1, and
) = )+ L+ p+ @) (pa) + ) (0. @) (9 q)

for 1 < k < n where cfiaﬂ(p, q) =0 unless n > k > 0.

Theorem 0.10. For all s > 0, ( flz)(p, q))n>0 s a Stieltjes moment

sequence of polynomials.
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One of the advantages of this set up is that we can set p = 0 in

such sequences. In particular, (cq(f})((), q))n>0 is a Stieltjes moment

sequence of polynomials. In such a situation, 67(5’2)(0, q) is the sum
over the weights of 2-colored Motzkin paths of height < s. That is,
the level steps can be colored with color 0 which has weight 1 or
colored with color 1 which has weight q. The down-steps all have

weight ¢ and the up-steps all have weight 1.
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Multivariate variations of Example 3.

Let x = (x1,...,2,) wheren >3 and let 1 < s1 < -++ < 5p,_1.
Then let r;(x) =1 for all ¢ > 1,
si(x)=14xy+---+x, forall i > 1, and

t(sl,...,sn_l)

; (x) equal xy if i < sq, z; if s;_1 <i<s;, and z, if

/[: > Sn_l.

Then let m = (r1(x), r2(x), r3(x),...) = (1,1,1,...),

o = (so(x),s1(x), s2(x),...) and

(51308n-1) (tgsl’“"'s”_”(x),té‘sl”“’S”_l)(x),té‘sl"“’S”‘l)(x), ) I
is easy to check that for any 1 < s; <--- < s,_1, these sequences
satisfy the hypothesis of Lemma 0.4.
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In this case, we are considering the polynomials defined by

co 7 () = 1,

et (x) =

(1 +x1+ -+ xn)cq(f,%)’m’sn_l)(X) 4 tgsl,...,sn_l)(X)Cgill,...,sn_l)
for n > 1, and

L) (x) =

L) () o (1 4 )L (x)

(81,...,8n_1) (81,...,8n_1)
bt n,k+1 (%)

for 1 <k <n,

where cq(i}ﬂ"“"s”_l)(x) = 0 unless n > k > 0.

(%)
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Cn.x(X) as the sum of the weights of Motzkin paths that start at
(0,0) and end at (n, k). where the weights of up-steps are 1, the
(81,...,Sn_1)

weights of down-steps ending at level k are ¢, 7} (x), and the
weights of level-steps 1 4+ 21 + - -+ + x,.

45
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In particular, we can interpret ¢, o(x) as weighted sum over

n + 1-colored Motzkin paths. That is, the levels of the Motzkin
path can be colored with one of n+1 colors, namely, color 0 which
has weight 1, color i which has weight x; for 2 = 1,...,n, and the

down-steps that end at level k£ have weight t,iiﬁi""S”_l)(x).

Theorem 0.11. Foralll <s; <--- < S,_1,

(CS,LS’B""’S”_”(:El, s Xp))n>0 1S a Stieltjes moment sequence of

polynomials.
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Example 4.

Let 7 = (r1(p,q,7),m2(p, ¢, 7),73(p> ¢, 7), - - .) = (1,1,1,..),

o= (so(p,q,7),s81(p,q,7),82(p, 45 7), - . ) = (q+7, pHag+r,ptg+r,...)
and 7 = (t1(p, q,7), tz(p,q, r),t3(p,q,7),...) =
(qlp+7r)qlp+r)qlp+r),...).

i0,0(pa q, T) — ]-7
int1,00,0,7) = (¢+7)ino(p,q,7)+q@+7)in1(p,q,r) for n > 1,and
int1.k(0:¢,7) = nk—1Pq,7) F P+ q+1)ink(D,¢,7)+ e+ 7)in k1P q,T)

for 1 <k <n where i, 1(p,q,7) =0 unless n > k > 0.
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We can interpret 4, x(p, q,7) as the sum of the weights of Motzkin
paths that start at (0,0) and end at (n, k) where the weights of
up-steps are 1, the weights of the down-steps are q(p + ), and the
weights of the level steps at level 0 is ¢ + r and the weights of the
level steps at level Kk > 1 are p+ q + 7.
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For example, if I(p,q,7) = [in k(q)], then

I(p,q,r) =
1
qa+r 1
(pa + a?) + 3qr + r? (p +2q) + 2r 1
(p%a + 3pa? + a®)+ (p? 4+ 5pq + 3¢%) + (3p + 8q)r + 372 (2p +3¢) +3r 1

(4pq + 6q2)r + 6qr2 4+ 3

Theorem 0.12. The sequence (in. 0(p,q,7))n>0 S a Stieltjes

moment sequence of polynomaals.
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(1) ino0(p,q,0) => 7, £ (7° )(knl)qkp”_"C from which it follows
that i, 0(1,1,0) = C,, where C,, = n+1 (2”) is the nt™ Catalan

mn
number.

(2) ino(p,q, 1) =>"1_, k_lH (”+k)( )¢"p™~* from which it follows
that (¢,,,0(1,1,1))n>0 is sequence [A006318] which is the sequence

of large Schooder numbers.
(3) We can show that (i, 0(1,1,7)),>0 is the triangle [A060693].

(4) The sequence (i, 0(1,1,2)),>0 starts out
1,3,12,57,300,1686,9912, ... which is sequence [A047891].

(5) The sequence (i, 0(1,2,1)),>0 starts out
1,3,13,67,381,2307,14598, ... which is sequence [A064062] of the
generalized Catalan numbers.
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(6) The sequence (i,,0(2,1,1)),>0 starts out
1,2,7,32,166,926, 5419, 32816, . .. which is sequence [A108524].

(7) The sequence (i,,0(2,2,1)),>0 starts out
1,3,15,93,645,4791,37275, ... which is sequence [A103210].

(8) The sequence (i, 0(2,1,2)),>0 starts out
1,3,13,71,441,2955, 20805, . .. which is sequence [A162326].

(9) The sequence (in 0(1,2,2)),>0 starts out
1,2,7,32,166,926, 5419, 32816, . .. which is sequence [A243626].

(10) The sequence (ip0(1,1,3)),>0 starts out
1,4, 20,116, 740, 5028, 35700, . . . which is sequence [A082298].
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(11) The sequence (ip0(1,3,1)),>0 starts out
1,4,22142,1006, 7570, 59410, . . . is sequence [A243626].

(12) The sequence (iy0(3,1,1)),>0 starts out
1,2,8,44, 276, 1860, 13140, . .. does not appear in the OEIS.
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Example 5

For any 0 =01 ---0, € Sy, let (des)(o) = [{i: 0; > 0;11}| and
(ris)(o) = [{i: 0; < 0;21}|. Wang and Zhu (2016) proved that
(En(q))n>0 is a Stieltjes moment sequence of polynomials where

En(Q) — ZEn,qu — Z qdes(a).
k=1

cEeS,

It follows from Theorem 0.6 that (E,(p, q))n>0 is a Stieltjes

moment sequence of polynomials where

n
En(p7 Q) — Z En,qup”_k — Z qdes(o)pris(gH_l.
k=1 cES,
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Let (b1(p,q),b2(p, ), b3(p,q),---) = (p,2p,3p, ...) and
(c1(p,q),c2(p,q),c3(p,q),...) =(0,q,2q,...). Using Lemma 0.5, we
see that J»¢ := J™%7 where

= (r1(p,q),m2(p,q),m3(P,q),--.) = (1,1,1,...),

o= (s0(p;q),51(p,q);52(p;q),-..) = (p,2p+¢q,3p+2¢,...) and

T = (t1(p, @), t2(p, @), t3(p, @), . . .) = (pq,2°pq, 3°pg, . . .).

hoolp,q) = 1,
hnt1,0P,q) = Phuo(p,q) + pghni(p,q) for n > 1,and
hot16(0,0) = honk—1(0,q) + (k+ 1)p+ kq)hni(p,q) + (k+ 1)°pghp x+1(p, q)

for 1 <k <n where h, x(p,q) = 0 unless n > k > 0.

hn 1 (D, q) as the sum of the weights of Motzkin paths that start at
(0,0) and end at (n, k) where the weights of up-steps are 1, the
weights of down-steps that ends at level k is (k + 1)?pq, and the
weights of the level steps at level k are (kK + 1)p + kq.
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One can show that h, o(p,q) = En(p,q).

Theorem 0.13. The sequence (Y g pris(e)t1gdes(o))

Stieltjes moment sequence of polynomaals.

n>0

1S Q
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