Several questions about tensors

Fuzhen Zhang

Nova Southeastern University, Fort Lauderdale, Florida, USA zhang@nova.edu

Presentation at AORC, Sungkyunkwan University, South Korea May 2017

What is a tensor?

Tensor algebra

Tensor analysis

:

What is a tensor?

A *Tensor* is an element of a *tensor space* just like a *vector* is an element of a *vector space*.

A vector in an n-dimensional space is represented by a one-dimensional array of length n with respect to a given basis:

$$v = a_1v_1 + a_2v_2 + \cdots + a_nv_n \longrightarrow (a_1, a_2, \ldots, a_n)$$

A tensor with respect to a basis is represented by a multi-dimensional array. For example, a linear transformation is represented in a basis as a two-dimensional square $n \times n$ array:

 (a_{ij})

$n \times n \times n$ Tensors

$$A = (a_{ijk})$$

$$a_{ijk}$$

Tensors in multilinear algebra

Like a *vector* in a vector space, a *tensor* is an element in a tensor space. In multilinear algebra, we begin with the **Cartesian space**

Tensor map and tensor space

$$f(v) = \sum_{i_1=1}^{n_1} \sum_{i_2=1}^{n_2} \cdots \sum_{i_m=1}^{n_m} x_{1i_1} x_{2i_2} \cdots x_{mi_m} f(e_{1i_1}, e_{2i_2}, \dots, e_{mi_m})$$

$$x_{i_1 i_2 \dots i_m} = x_{1i_1} x_{2i_2} \cdots x_{mi_m} \in \mathbb{F}$$

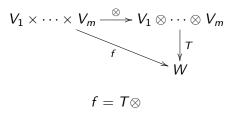
$$w_{i_1 i_2 \dots i_m} = f(e_{1i_1}, e_{2i_2}, \dots, e_{mi_m}) \in W$$

If f is a multilinear map s.t $\dim \langle \operatorname{Im}(f) \rangle = \prod_{t=1}^m n_t$, then f is said to be a *tensor map*, denoted by \otimes . The elements in $\langle \operatorname{Im}(\otimes) \rangle$ are called *tensors*. The elements in $\operatorname{Im}(\otimes)$ are decomposable tensors:

$$v_1 \otimes v_2 \otimes \cdots \otimes v_m \in W = V_1 \otimes V_2 \otimes \cdots \otimes V_m$$

 $(x_{i_1 i_2 \dots i_m}), \quad 1 \leq i_t \leq n_t, \quad t = 1, 2, \dots, m$
 $f(v) = \sum x_{i_1 i_2 \dots i_m} e_{1i_1} \otimes e_{2i_2} \otimes \cdots \otimes e_{mi_m}$

Universal Factorization Property



Tensors via R-module

In algebra, consider the **Cartesian product** $V_1 \times V_2 \times \cdots \times V_m$ as a **set**. Every set freely generates an R-module \mathcal{F} . Embed

$$V_1 \times V_2 \times \cdots \times V_m \hookrightarrow \mathcal{F}$$

Let

$$N = \langle \{(v_1, \ldots, \alpha v_k + \beta v'_k, \ldots) - \alpha(v_1, \ldots, v_k, \ldots) - \beta(v_1, \ldots, v'_k, \ldots) \} \rangle$$

The quotient space is called the tensor product space of the V_i 's:

$$\mathcal{F}/N = V_1 \otimes \cdots \otimes V_m$$

Quadratic form and tensor

Quadratic form

$$f(x) = x^t A x = \sum_{i,j=1}^n a_{ij} x_i x_j,$$

where $x = (x_1, ..., x_n)$, $A = (a_{ij})$ is a symmetric matrix. An *n*-dimensional homogeneous polynomial form of degree m, f(x), is equivalent to the tensor product of a supersymmetric *n*-dimensional tensor A of order m, and the rank-one tensor x^m :

$$f(x) = Ax^m := \sum_{i_1, \dots, i_m = 1}^n a_{i_1, \dots, i_m} x_{i_1} \cdots x_{i_m}$$

Tensors as mapping

$$\mathcal{A}: \langle n_1 \rangle \times \langle n_2 \rangle \times \cdots \times \langle n_m \rangle \mapsto \mathbb{F}$$

$$\mathcal{A}(i_1, i_2, \cdots i_m) = a_{i_1 i_2 \cdots i_m}$$

$$(a_0), \quad (a_i), \quad (a_{ij}), \quad (a_{ijk}), \quad \cdots$$

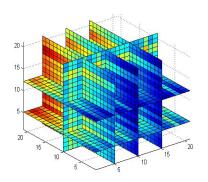
Tensors, hypermatrices, multidimensional array, cubes

$$(a_{i_1i_2\cdots i_m})$$

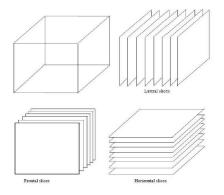
- Hypermatrix: Lim, Handbook of Linear Alg., 2nd ed., 2014
- Tensor: Cui, Li, Ng, SIAM. J. Matrix Anal. Appl., 2014
- K.C. Chang on nonnegative tensors, 2013
- L.Q. Qi research on tensors since 2000+
- Semi-magic cube: Ahmed et al, Discrete and Computational Geometry Algorithms and Combinatorics, 2003
- Stochastic **cubes**, Gupta and Nath, 1973
- Multidimensional matrices, Brualdi and Csima 1970s
- **Higher dimensional configurations**, Jurkat and Ryser 1968s

Applications of tensors

- Almost everywhere in Math and Physics
- Computer science
- Quantum computation and information
- Many more...



Ways to study: Divide stochastic cube into slices



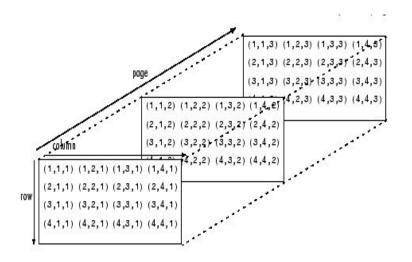
Cube to slices. In a triply stochastic cube, every slice is doubly stochastic.

We will divide a (3D) stochastic cube into (2D) stochastic matrices - slices. Using the properties of stochastic matrices, we study the polytope of the stochastic cubes.

Data cube

			100	in reference and	- Carlondia	-	مقارات المعاد	a william
					1914 19 19 19 19 19 19 19 19 19 19 19 19 19	the server sit		enn szez
			1108 80	CONTRACTOR TOLLAR TOLLAR	100000		orani mara	
	Market Control	£ 1250	27/ 350		1000 1800	red Large	2	902 960
			40.000 A	فأتكار موجوس مجازات	100 1220 3	7 1.55	1 . 13	8,182 821,25
			1 - Jan 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			Index 0		
Index	0	1	2	3	4	Inde. 65,340	124,642 60	3 902 960 8,189 921,254 0,380 821,254 0,380 329,274 11,691 263,010 3,611 263,010
0	65,340	12,483	138,189	902,960	633,877	0 5,246		
1	5,246	424,642	650,380	821,254	866,122	1 89.678	4,56 ⁷ 658,305 17	3,788 978. 3,786 89,672 5,586 556,801 3,784 638,108 1,753 638,108
2	89,678	236,781	601,691	329,274	913,534	103.00	658,303	5,586 89.0 3,784 556,801 3,784 538,108 4,753 548,322 5,040 548,322 5,040 548,322
3	103,902	4,567	733,611	263,010	85,550	3 2,778	55.059	3,784 638,108
4	2,778	658,305	128,788	978,155	620,702	4 45,024	47.538	4,753 548,322
5	45,024	55,058	705,586	89,672	384,605	5 780	350.890	5,040 513,048
6	780	47,538	523,784	556,801	617,107	6 32,667	145,582	7,938
7	32,667	350,890	834,753	638,108	85,188	7 56.083	543,542	3,784 556,80 3,784 638,108 4,753 638,108 5,040 548,322 7,758 513,048
8	56,083	145,582	775,040	548,322	756,587	8 41,123		
9	41,123	543,542	537,738	513,048	418,482	9		

Tensor indices



Courtesy of mathworks

The $2 \times 2 \times 3$ and $3 \times 3 \times 3$ Tensors

$$A = (a_{ijk})$$

$$i, j = 1, 2, k = 1, 2, 3$$
:

$$A = \left[\begin{array}{cccccc} a_{111} & a_{121} & & a_{112} & a_{122} & & a_{113} & a_{123} \\ a_{211} & a_{221} & & a_{212} & a_{222} & & a_{213} & a_{223} \end{array} \right]$$

$$i, j, k = 1, 2, 3$$
:

Combinatorial properties of tensors

Combinatorial properties of tensors

Recall doubly stochastic matrices

Let $A = (a_{ij})$ be an $n \times n$ nonnegative matrix: $a_{ij} \ge 0$, $\forall i, j$.

If for every $i = 1, 2, \dots, n$ (fix a row)

$$\sum_{j=1}^{n} a_{ij} = 1 \qquad \text{(row sum)}$$

and for every j = 1, 2, ..., n (fix a column)

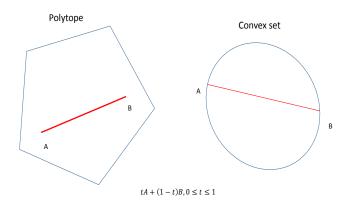
$$\sum_{i=1}^{n} a_{ij} = 1 \qquad \text{(column sum)}$$

then A is called a doubly stochastic matrix.

Birkhoff-von Neumann Polytope Theorem

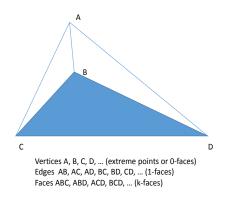
- Birkhoff (1946) von Neumann (1953): An $n \times n$ matrix is doubly stochastic if and only if it is a convex combination of some $n \times n$ permutation matrices.
- The van der Waerden conjecture (1926-1981): The permanent function defined on set of $n \times n$ doubly stochastic attains its minimum value $\frac{n!}{n^n}$ when all entries are equal to $\frac{1}{n}$.
- The Birkhoff polytope: Consider $n \times n$ matrices as elements in \mathbb{R}^{n^2} . The polytope of all $n \times n$ doubly stochastic matrices is generated by the permutation matrices. It has dimension $(n-1)^2$ with n! vertices and n^2 facets.

Polytope



A polytope is a finitely generated convex set (hull)

Polytope

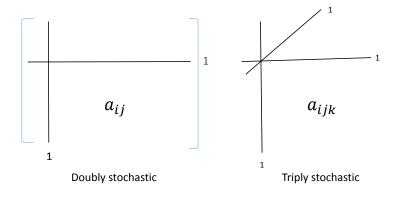


Polytope of tensors

Study the polytopes of higher dimension (mainly $n \times n \times n$) tensors as subsets of \mathbb{R}^m (resp. $m = n^3$)

- Shapes and relations of three polytopes
 - **1** 0-1 generated polytope Δ_n
 - 2 convex set of positive Per D_n
 - **3** and triply stochastic tensors Ω_n
- Number of vertices of triply stochastic tensors
- Line stochastic tensors vs plane stochastic tensors

From doubly stochastic to triply stochastic



Higher dimensions

Consider a multidimensional array (hypermatrix, cube, tensor) of numerical values, $n \times n \times n$, say, satisfying:

$$A = (a_{ijk}), \quad a_{ijk} \ge 0$$

$$\sum_{i=1}^{n} a_{ijk} = 1, \quad \forall j, k$$

$$\sum_{j=1}^{n} a_{ijk} = 1, \quad \forall i, k$$

$$\sum_{k=1}^{n} a_{ijk} = 1, \quad \forall i, j$$

More generally, an $n_1 \times n_2 \times \cdots n_m$ tensor of order m

$$A = (a_{i_1 i_2 \cdots i_m}), \quad 1 \le i_t \le n_t, \quad t = 1, 2, \dots, m$$

Warm-up question: Ranks of coefficient matrices?

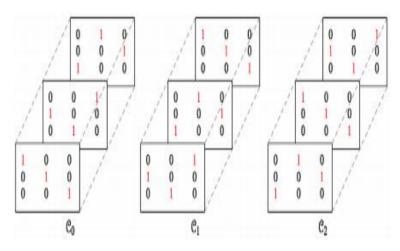
By a matrix approach, find the ranks of the coefficient matrices for

$$\sum_{i=1}^{n} x_{ij} = 1, \ j = 1, 2, \dots, n, \quad \sum_{j=1}^{n} x_{ij} = 1, \ i = 1, 2, \dots, n$$

and

$$\sum_{i=1}^{n} y_{ijk} = 1, \quad \sum_{i=1}^{n} y_{ijk} = 1, \quad \sum_{k=1}^{n} y_{ijk} = 1.$$

What is a permutation tensor?



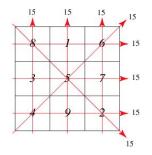
Courtesy of Xie, Jin, and Wei 2016 LAMA

Latin squares and permutation tensors

А	В	С	
В	С	Α	
С	Α	В	

1	2	3	
2	3	1	
3	1	2	

Magic square and Semi-magic Square



1	5	9	
6	7	2	
8	3	4	

Latin squares and permutation tensors

the 12 Latin squares of order three are given by

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 3 & 2 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 & 3 \\ 3 & 2 & 1 \\ 1 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 3 & 1 \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 2 & 3 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 2 & 3 & 1 \\ 3 & 2 & 3 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 3 & 3 & 2 \end{bmatrix}, \begin{bmatrix} 3 & 1 & 2 \\ 3 & 3 & 2 \end{bmatrix}, \begin{bmatrix}$$

Latin squares and permutation tensors

Fact:

 $L_n = \#$ of $n \times n$ Latin square;

 $P_n = \#$ of $n \times n \times n$ permutation tensors. Then

$$L_n = P_n$$

Proof. If (i,j)-entry of the Latin square is k, then let $p_{ijk}=1$. \square

How many Latin squares?

Fact (van Lint & Wilson, p.161):

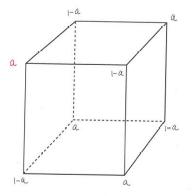
$$\prod_{k=1}^{n} (k!)^{n/k} \ge L_n \ge \frac{(n!)^{2n}}{n^{n^2}}.$$

Shao and Wei (1992):

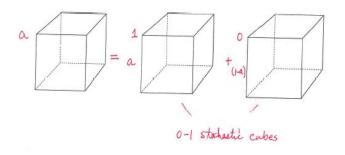
$$L_n = n! \sum_{A \in B_n} (-1)^{\sigma_0(A)} \binom{\operatorname{per} A}{n}$$

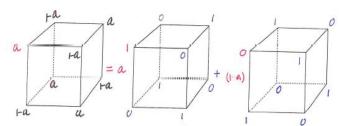
where B_n is the set of all 0-1 $n \times n$ matrices, $\sigma_0(A)$ is the number of zero entries in matrix A, and per A is the permanent of matrix A.

The $2 \times 2 \times 2$ stochastic tensors



The $2 \times 2 \times 2$ stochastic tensors





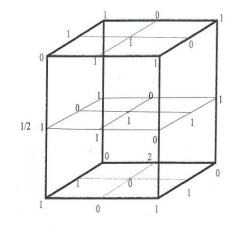
The $3 \times 3 \times 3$ stochastic tensors

There are 12 0-1 $3 \times 3 \times 3$ permutation tensors.

Question: Can every $3 \times 3 \times 3$ stochastic cube be written as a convex combination of 0-1 $3 \times 3 \times 3$ stochastic cubes

12 0-1 permutation tensors as vertices + 54 non 0-1 vertices.

The $3 \times 3 \times 3$ case: An extreme pt with non 0-1 entries



Not a combination of 0-1 tensors; it's an extreme point

A stochastic tensor with 0 per

Let F be

If $F = x_1P_1 + \cdots x_kP_k$, where each P_i is a permutation tensor, then every P_i takes the form below (same 0-1 pattern as F). There is only one such permutation cube. (Start with |*|).

Upper bound for the number of vertices

Krein-Milman theorem: every compact convex polytope is the convex hull of its vertices.

The Birkhoff polytope (doubly stochastic matrices) is the convex hull of the n! permutation matrices.

How many vertices (edges, *i*-faces, facets, etc) does Ω_n have?

Existing upper/lower bounds

Let $f_0(\Omega_n)$ be the number of vertices (0-face) of Ω_n .

Theorem (Ahmed 2003-Chang, Paksoy and Z. 2016, LZZ 2017)

$$\frac{(n!)^{2n}}{n^{n^2}} \le f_0(\Omega_n) \le \binom{n^3 - \lfloor \frac{(n-1)^3 + 1}{2} \rfloor}{3n^2 - 3n + 1} + \binom{n^3 - \lfloor \frac{(n-1)^3 + 2}{2} \rfloor}{3n^2 - 3n + 1}$$

The polytope Ω_n is an $(n-1)^3$ -dimensional affine subspace of \mathbb{R}^{n^3} ; it has exactly n^3 facets $F_{ijk} = \{x \in \Omega_n \mid x_{ijk} = 0\}, 1 \leq i, j, k \leq n$.

Question 0: Qs about the polytope Ω_n

- Over \mathbb{R} Convex Analysis, computational geometry
 - **1** What are *exactly* the vertices of Ω_n ?
 - **2** Give *better* lower/upper bounds for # of vertices of Ω_n .
 - **3** What are *exactly* the vertices of Ω_n that are not 0-1 tensors?
 - What are the *k*-faces (say, dim =1, edges) of Ω_n ?
- Over Q Algebraic Combinatorics
 - **1** Find the structures of the vertices of Ω_n .
 - **2** Find the number of vertices of Ω_n .
 - **3** Are there vertices of Ω_n that are not rational?

Questions 1: How many extreme points for $4 \times 4 \times 4$?

Case	lower	actual	upper
n=2	1	2	21318
n=3	2.37	66	$\tfrac{1}{27}\tbinom{65}{26}$
n=4	25.6	$f_0(\Omega_4)^*$	$\tfrac{1}{64} {138 \choose 63}$

Lower and upper bounds

- * Ke, Li, and Xiao, 2016: $f_0(\Omega_4) = 225,216$
- * R. Sze, email Dec. 30, 2016: $f_0(\Omega_4) = 37,081,728$

Question 2: Search for better bounds

Let L_n denote the number of $n \times n$ Latin squares.

Note that $L_n \geq \frac{(n!)^{2n}}{n^{n^2}}$ (see, e.g., van Lint&Wilson, p.162).

Every Latin square is interpreted as a 0-1 permutation tensor and every $n \times n \times n$ 0-1 permutation tensor is an extreme point of Ω_n :

$$\frac{(n!)^{2n}}{n^{n^2}} \leq L_n \leq f_0(\Omega_n)$$

A big gap between L_n and $f_0(\Omega_n)$! Need better bounds!!

Question 3: $K_n \leq f_0(\Omega_n)$?

Let L_n denote the number of $n \times n$ Latin squares.

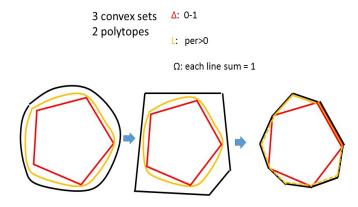
It is known that (see also van Lint&Wilson's book).

$$\frac{(n!)^{2n}}{n^{n^2}} \le L_n \le \prod_{k=1}^n (k!)^{n/k} := K_n.$$

We would like to ask the question if $K_n \leq f_0(\Omega_n)$.

What is the permanent/determinant of a Latin square?

Question 4: What is the boundary of Ω_n ?



Question 5: When is a tensor stochastic?

$$A=(a_{ijk})_{n\times n\times n}$$

$$A = (a_{i_1 i_2 \cdots i_d})_{n_1 \times n_2 \times \cdots \times n_d}$$

Line-stochastic: each sum w.r.t. one index =1

Plane-stochastic: each sum w.r.t. two indices =1

k-hyperplane stochastic: each sum w.r.t. k indices =1

Does there exist some sort of stochastic tensor of size $2 \times 2 \times 2 \times 2$? 0-1 tensor of size $2 \times 2 \times 2 \times 2$?

From det, per, GMF of matrices to tensors

$$A = (a_{ij})_{n \times n}$$

$$\det A = \frac{1}{2} \sum_{\alpha, \beta \in S_n} (-1)^{sgn(\alpha)sgn(\beta)} \prod_i a_{\alpha(i)\beta(i)}$$

$$\operatorname{per} A = \frac{1}{2} \sum_{\alpha, \beta \in S_n} \prod_i a_{\alpha(i)\beta(i)}$$

$$d_G^X A = \frac{1}{2} \sum_{\alpha, \beta \in G} \chi(\alpha)\chi(\beta) \prod_i a_{\alpha(i)\beta(i)}$$

$$\downarrow$$

$$A = (a_{ijk})_{n \times n \times n}$$

Hyperdeterminant

Cayley (1849-):

$$A = (a_{i_1 i_2 \cdots i_d})_{n \times n \times \cdots \times n}$$

$$\det A = \frac{1}{n!} \sum_{\pi_1, \dots, \pi_d \in S_n} sgn(\pi_1) \dots sgn(\pi_d) \prod_{i=1}^n a_{\pi_1(i) \dots \pi_d(i)}$$

det(A) = 0 if d is odd

Gelfand et al (1992)

L.-H. Lim (Chapter 15 in Handbook of Lin. Alg., CRC, 2013)

Hyperpermanent or permanent for d-dim arrarys

Cayley (1849-):

$$A = (a_{i_1 i_2 \cdots i_d})_{n \times n \times \cdots \times n}$$

$$\operatorname{per} A = \frac{1}{n!} \sum_{\pi_1, \dots, \pi_d \in S_n} \prod_{i=1}^n a_{\pi_1(i) \dots \pi_d(i)}$$

$$\operatorname{per} A = \sum_{\pi_2, \dots, \pi_d \in S_n} \prod_{i=1}^n a_{i\pi_2(i) \dots \pi_d(i)}$$

$$A = (a_{ijk})_{n \times n \times n}$$

$$A = (a_{ij\cdots k})_{n_1 \times n_2 \times \cdots \times n_d}$$

Question 6: Find bounds of the permanent of a 0-1 tensor

Let A be a 0-1 tensor. Then

$$? \leq \operatorname{per} A \leq ?$$

References

- M. Ahmed, J. De Loera, and R. Hemmecke, *Polyhedral Cones of Magic Cubes and Squares*, in Disc. Comput. Geo. Algo. Comb., Vol. 25, pp. 25–41 (eds B. Aronov et al), 2003, Springer.
- 2 H. Chang, V.E. Paksoy, and F. Zhang, *Polytopes of Stochastic Tensors*, Ann. Funct. Analysis, Vol. 7, No. 3 (2016), 386–393.
- S.-B. Cui, W. Li, and M.K. Ng, Birkhoff-von Neumann Theorem for Multistochastic Tensors, SIMAX. 35 (2014) 956–973.
- Z. Li, F. Zhang and X.-D. Zhang, On the number of vertices of the stochastic tensor polytope, LAMA online, 2017.
- 3 R. Ke, W. Li and M. Xiao, Characterization of Extreme Points of Multi-Stochastic Tensors, Comput. Methods Appl. Math. 2016.
- 6 G.M. Ziegler, Lectures on Polytopes, Springer, 1995.

