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@ M, be the set of n X n complex matrices.

@ For A € M, the conjugate transpose of A is denoted by A*. A€ M, is
Hermitian if A= A™.

@ A Hermitian A is positive semi-definite, (A > 0) if all eigenvalues of A are
non-negative.

@ For Hermitian matrices A and B, write A> Bif A— B> 0.

@ If Ae M, let A\;(A), j=1,2,...n, be the the eigenvalues of A so
arranged that |A;(A)| > |Ajit1(A)| for j=1,2,...n—1.
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Definitions and notations

M, be the set of n X n complex matrices.

For A € M, the conjugate transpose of A is denoted by A*. A € M, is
Hermitian if A= A™.

A Hermitian A is positive semi-definite, (A > 0) if all eigenvalues of A are
non-negative.

For Hermitian matrices A and B, write A> Bif A— B> 0.

If A€ M,, let \;(A), j=1,2,...n, be the the eigenvalues of A so
arranged that |A;(A)| > |Ajit1(A)| for j=1,2,...n—1.

The singular values of a complex matrix A are the eigenvalues of
|A| := (A*A)"?, and we denote the singular values of A by
aj(A) = N (|A])-

The n x n identity matrix is denoted by /,.

A € M, is called contractive if 01(A) < 1, equivalently, I, > A*A.
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Hua's determinantal inequalities

Let A, B € M, be contractive. Then

| det(l, — A*B)|* > det(l, — A*A) det(l, — B*B), (1)
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Hua's determinantal inequalities

Hua's determinantal inequalities

Let A, B € M, be contractive. Then

| det(l, — A*B)|* > det(l, — A*A) det(l, — B*B), (1)

Equivalent, J] L07(lh— A*B) > [T, % (1 — A*A) (I, — B*B))
= szl (Nl = A" A);(l — B"B))
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Hua's determinantal inequalities

Hua's determinantal inequalities

Let A, B € M, be contractive. Then

| det(l, — A*B)|* > det(l, — A*A) det(l, — B*B), (1)

Equivalent, J] L07(lh— A*B) > [T, % (1 — A*A) (I, — B*B))
= szl (Nl = A" A);(l — B"B))

Lin proves that for contractive A, B € M,,
02l — A"B) > o (I — A" A)(Io — B"B)) (2)

This provides a generalization of (1) because for P € M, and 1 < k < n,

[T, 0i(P) > [T, (P
which gives
HJ 1 J(l — A*B) > H71 oj ((In — A*A)(I, — B*B))
> TILn ((/n — A" A)(ln — B'B))
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Ando’s Young inequality

As a complement to (2), Lin proves that for contractive A, B € M,

0?(ln — AB*) > 0; (I — A*A)(I, — B*B))
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Ando’s Young inequality

As a complement to (2), Lin proves that for contractive A, B € M,
0?(ln — AB*) > 0; (I — A*A)(I, — B*B))
Furthermore, Lin showed that for contractive A, B € M, and

1 1
P, q>07 7+7:1r
P q
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Ando’s Young inequality

As a complement to (2), Lin proves that for contractive A, B € M,
0?(ln — AB*) > 0; (I — A*A)(I, — B*B))
Furthermore, Lin showed that for contractive A, B € M, and

p, g >0, l—1—1:1, we have
P q

01-2(/,1 —AB*) >0 ((In . |A|p)2/P(,n _ |B‘q)2/q) 3)
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Ando’s Young inequality

As a complement to (2), Lin proves that for contractive A, B € M,
0?(ln — AB*) > 0; (I — A*A)(I, — B*B))
Furthermore, Lin showed that for contractive A, B € M, and

p, g >0, l—1—1:1, we have
P q

01-2(/,1 —AB*) >0 ((In . |A|p)2/P(,n _ |B‘q)2/q) 3)

Ando’s Young inequalities

Let A, B € M, and p,q > 0 with % + % =1, there is a unitary matrix U such
that | .
UIAB*|U" < ;|A|” + E|B\". (4)
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Ando’s Young inequality

To deduce (3) from (4),
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Ando’s Young inequality

To deduce (3) from (4), we have

1 1
UIAB*|U" < =|A]P + =|B|*
P q
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Ando’s Young inequality

To deduce (3) from (4), we have

1 1
UIAB*|U" < =|A]P + =|B|*
P q

(h —1A") | (h —[BI%)

= I, — U|AB*|U* >
p q
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Ando’s Young inequality

To deduce (3) from (4), we have

UABTIUT < Tjap+ LBy
P q
_|AlP _IR|9
P q
I, — |APP)P)? I, — |B|")Y9)?
= U(l,—|AB*|)U* > ( |p‘) ) +(( ‘q” )
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Ando’s Young inequality

To deduce (3) from (4), we have
* * 1 1
UIAB®|U" < —|A]P + —|B*
P q
I, — |A]P L |B|d
(h —1A") | (h —[BI%)
I3 q
(= 1AP?)"  ((h — 1B1))°
+
P q

V| (I = |AIPYYP (I — |BI%)Y 7| v*
for some unitary V

= I, — U|AB*|U*

\Y

= U(l—|AB*)U" >

\%
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Ando’s Young inequality

To deduce (3) from (4), we have
* * 1 1
UIAB®|U" < —|A]P + —|B*
p q

(h —1A") | (h —[BI%)

= I, — U|AB*|U* >

p q

/n,Apl/Pp I,,qul/qq
= U(lL-|AB*|)U* > (( Al ) -l-(( B )
p q
> V(= AP (1 — B v

for some unitary V

= o?(ln— AB*) = N(|l, — AB|)
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Ando’s Young inequality

To deduce (3) from (4), we have

1 1
UIAB*|U" < =|A]P + =|B|*
P q

(h —1A") | (h —[BI%)

= I, — U|AB*|U* >
4 q
/n,Apl/Pp I,,qul/qq
= U(lL-|AB*|)U" > (( AP ) +(( 1BI) )
P q
> V(= AP)YP (I — |B|7)Y | v

for some unitary V
= o?(ln— AB*) = N(|l, — AB|)
A (I, — |AB*])

\Y
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Ando’s Young inequality

To deduce (3) from (4), we have
* * 1 1
UIAB®|U" < —|A]P + —|B*
p q

(h —1A") | (h —[BI%)

= I, — U|AB*|U* >
4 q
/n,Apl/Pp I,,qul/qq
= U(lL-|AB*|)U" > (( AP ) +(( 1BI) )
P q
> V(= AP)YP (I — |B|7)Y | v

for some unitary V
= o?(ln— AB*) = N(|l, — AB|)
X (I — |AB™)
N2 (|( — APY? (1 — |BI)])

\Y

\Y]
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Ando’s Young inequality

To deduce (3) from (4), we have

1 1
UIAB*|U" < =|A]P + =|B|*
P q

(h —1A") | (h —[BI%)

= I, — U|AB*|U* >
4 q
/n,Apl/Pp I,,qul/qq
= U(lL-|AB*|)U" > (( AP ) +(( 1BI) )
P q
> V(= AP)YP (I — |B|7)Y | v

for some unitary V
= o?(ln— AB*) = N(|l, — AB|)
X (I — |AB™)
N2 (|( — APY? (1 — |BI)])

\Y

\Y]

A ([0 = 1497 (1, 1819 )
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Ando’s Young inequality

To deduce (3) from (4), we have
* * 1 1
UIAB®|U" < —|A]P + —|B*
P q
I, — |A]P L |B|d
(h —1A") | (h —[BI%)
I3 q
(U —1AP)?)" ((n — 1B]9)")°
+
P q
V[~ 1APYY? (1~ |BI7Y | v
for some unitary V

= o?(ln— AB*) = N(|l, — AB|)

= I, — U|AB*|U* >

= U(l—|AB*)U" >

\%

> X~ 14B"))

> 8 (| = JAP)Y” (1~ 1B
= v ([t = 14ry7% (1 - 117 77[)
> oy ((h = |APY" (1= |B)7/)
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then

f (I — A*B) > a; (I — |AIP)*/P (I, — |B|7)?/7)
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
il = A*B) > a; (I — |AIP)*P(ln — |B|*)?/7)
il = A*B) > A ((lh — |AIP)P(In — |B|)*/9)
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
of(lh—A"B) > a; (I — |APP)>*(I, — |B|)*/)
il — A"B) > N (I — [APP)>?(1, — [BI)?/9)
0j(lh = A*B) 2 A (I = [AI”)1/q(ln — |BI%))
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
of(lh—A"B) > a; (I — |APP)>*(I, — |B|)*/)
il — A"B) > N (I — [APP)>?(1, — [BI)?/9)
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Here, for positive definite matrices P, Q and 0 <t <1,
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Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
of(lh—A"B) > a; (I — |APP)>*(I, — |B|)*/)
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
of(lh—A"B) > a; (I — |APP)>*(I, — |B|)*/)
il — A"B) > N (I — [APP)>?(1, — [BI)?/9)
0j(lh = A*B) 2 A (I = [AI”)1/q(ln — |BI%))
0j(ln— A"B) = A; (I — |AIP)Y*(1, — |BI)"/9)

Here, for positive definite matrices P, Q and 0 <t <1,
Pt.Q = pl/2 (P—1/QQP—1/2)f pl/2.

The problem remains open for p # 2.
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
of(lh—A"B) > a; (I — |APP)>*(I, — |B|)*/)
il — A"B) > N (I — [APP)>?(1, — [BI)?/9)
0j(lh = A*B) 2 A (I = [AI”)1/q(ln — |BI%))
0j(ln— A"B) = A; (I — |AIP)Y*(1, — |BI)"/9)

Here, for positive definite matrices P, Q and 0 <t <1,
Pt.Q = pl/2 (P—1/QQP—1/2)f pl/2.
The problem remains open for p # 2.

Even when p = g = 2, Ando’s Young inequality (4) does not hold if AB* is
replaced by A*B,
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Ando’s Young inequality

Lin conjectured that (3) holds with AB* is replaced by A*B.

Lin's conjectures

Let A, B € M, be contractive. Then
of(lh—A"B) > a; (I — |APP)>*(I, — |B|)*/)
il — A"B) > N (I — [APP)>?(1, — [BI)?/9)
0j(lh = A*B) 2 A (I = [AI”)1/q(ln — |BI%))
0j(ln— A"B) = A; (I — |AIP)Y*(1, — |BI)"/9)

Here, for positive definite matrices P, Q and 0 <t <1,
Pt.Q = pl/2 (P—1/QQP—1/2)f pl/2.
The problem remains open for p # 2.

Even when p = g = 2, Ando’s Young inequality (4) does not hold if AB* is
replaced by A*B, AB or A*B*.

Yiu Tung Poon Some inequalities on singular values and eigenvalues




Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:
1

1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1,
p1 Pm
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:

1 1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1, we have
p1 Pm

a;|Pt
‘31"'3m|S¢+"'+
p1 Pm

‘am|Pm
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:

1 1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1, we have
p1 Pm

P1 Pm
‘a a|<|al‘ ++M
p1 Pm
This can be used to give a generalization of Hélder inequalities: Given
a=(d,. . . ,a)eC" 1<j<mandpi,...,pm > 0 satisfying
1
— 44+ = =1,
p1 Pm
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:

1 1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1, we have
p1 Pm
P1 Pm
‘a a|<|al‘ ++M
p1 Pm

This can be used to give a generalization of Hélder inequalities: Given
a=(d,. . . ,a)eC" 1<j<mandpi,...,pm > 0 satisfying

l+~-~+—:1, we have

p1 Pm 1
n 1
Do lai-arl < llatlley - 1™ lpn
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:

1 1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1, we have
p1 Pm
a7 ap|Pm
[T
p1 Pm

This can be used to give a generalization of Hélder inequalities: Given
a=(d,. . . ,a)eC" 1<j<mandpi,...,pm > 0 satisfying

1 1
— +---+ — =1, we have
P P nol 1
Yo lai - arl < latley - ™ lom-

On the other hand, Ando’s Young inequality (4) does not have a direct
generalization to more than two matrices.

lai- - am| <
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:

1 1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1, we have
p1 Pm
P1 Pm
‘a a|<|al‘ ++M
p1 Pm

This can be used to give a generalization of Hélder inequalities: Given
a=(d,. . . ,a)eC" 1<j<mandpi,...,pm > 0 satisfying

1
— +---+ — =1, we have
p1 Pm 1
nol
Yo lai - arl < latley - ™ lom-

On the other hand, Ando’s Young inequality (4) does not have a direct
generalization to more than two matrices. For example, given
Al, A2, Az € M,
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Ando’s Young inequality

The scalar Young inequality can be extended to a product of more than two
terms:

1 1
Given a1,...,am € C and p1,...,pm > O satisfy — +---+ — =1, we have
p1 Pm
P1 Pm
‘a a|<|al‘ ++M
p1 Pm

This can be used to give a generalization of Hélder inequalities: Given
a=(d,. . . ,a)eC" 1<j<mandpi,...,pm > 0 satisfying

1
— +---+ — =1, we have
p1 Pm 1
nol
Yo lai - arl < latley - ™ lom-

On the other hand, Ando’s Young inequality (4) does not have a direct
generalization to more than two matrices. For example, given
A1, Ay, As € M, the following inequality

|A1|P1 + |A2|P2 + |A3|P3

U|ALAS A3|U™ <
p1 P2 P3

may not hold for any unitary U.
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B,
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B, AB or
A*B*.
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B, AB or
A*B*. Given A, B€ M,, let Ac {A, A"} and Be {B, B*}.
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B, AB or
A*B*. Given A, B€ M,, let Ac {A, A"} and B¢ {B, B*}. For

1 1
P; q>17 -+ -=1,
P q
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B, AB or
A*B*. Given A, B€ M,, let Ac {A, A"} and B¢ {B, B*}. For

1 1
p, g>1, ; + 5 =1, there exist unitaries U and V such that

UJAPU*  V|B|7V*
+ |

|AB| <
p q
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B, AB or
A*B*. Given A, B€ M,, let Ac {A, A"} and B¢ {B, B*}. For

1 1
p, g>1, ; + 5 =1, there exist unitaries U and V such that

UJAPU*  V|B|7V*
+ |

|AB| <
p q

1

1
Suppose A, ...,An € M, and pl,...,pm>Osatisfyp——i—---—&——:l.
1

Pm
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Ando’s Young inequality

There is a weaker version of (4) that allows us to replace AB* by A*B, AB or
A*B*. Given A, B€ M,, let Ac {A, A"} and B¢ {B, B*}. For

1 1
p, g>1, ; + 5 =1, there exist unitaries U and V such that

-~ UIAPU*  V|B|9Vv*
g < YAV VIBIVE

p q

1
Suppose A, ...,An € M, and pl,...,pm>Osatisfyp—+---
1

A € {A;, Ar} for 1 < j < m. There exist unitaries Ui, ..., Uy such that

- . Ur| Ay P U Un|Am|Pm Uz,
|A1...Am|§u+...+¥
p1 Pm
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Generalization of Hua's determinantal inequality

Suppose Ai,...,An € M, are contractive matrices, r > 1 and p1,...,pm >0
1 1

satisfy — +---+ — = 1.
pP1 Pm
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Generalization of Hua's determinantal inequality

Suppose Ai,...,An € M, are contractive matrices, r > 1 and p1,...,pm >0
1
satisfy p— +---+ — =1. Then forall 1 < k < n, we have
1 m
k m k
TT—x04 A = TTTT 2 - 0™
j=1 i=1 j=1
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