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Introduction

Mathematically, quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace 1.

Quantum operations / channels are represented by trace preserving
completely positive maps that admit the operator sum representation

Φ(X) =
r∑
j=1

FjXF
∗
j for all X ∈Mn,

where F1, . . . , Fr ∈Mn satisfy
∑r

j=1 F
∗
j Fj = In.

In quantum science, one needs to manipulate quantum states using
quantum operations.
One may also want to estimate the change of a quantum states after they
go through a certain quantum channel.
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General Questions

Interpolation and Approximation Problems
Let S be a set of quantum operations from Mn to Mm.

Suppose

F1 = {ρ1, . . . , ρk} ⊆Mn and F2 = {σ1, . . . σk} ⊆Mm

are two families of density matrices.
Determine the conditions for the existence of Φ ∈ S such that

Φ(ρj) = σj for all j = 1, . . . , k.

If such a quantum operation does not exist, what are the maximum or
minimum “distance” measure between

(σ1, . . . , σk) and (Φ(ρ1), . . . ,Φ(ρk)) for Φ ∈ S.

Example Suppose F1,F2 ⊆M2. Then ...
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Some Known Results

(Chefles, Jozsa, Winter, 2004) F1,F2 are families of pure states

ρi = xix
∗
i and σi = yiy

∗
i for i = 1, . . . , k.

Construct a k × k correlation matrices C such that C ◦ (y∗i yj) = (x∗i xj).

(Li and Poon, 2011) F1,F2 are commuting families. Suppose

ρi =

ai1
. . .

ain)

 and σi =

bi1
. . .

bim

 for i = 1, . . . , k.

Construct an n× k row stochastic matrix D such that (aij)D = (bij).

(Huang, Li, E. Poon, Sze, 2012) General families. Solve some
complicated matrix equations.
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(Huang, Li, E. Poon, Sze, 2012) Qubit channels.

If k = 1, always possible.

If k = 4, just check the Choi matrix C(Φ) = (Φ(Eij)).

If k = 2, we may assume that ρ1, ρ2 are pure states, and check

F (ρ1, ρ2) = ‖√ρ1
√
ρ2)‖ ≤ ‖

√
σ1
√
σ2‖. (1)

If k = 3, we may assume that ρ1 = x1x
∗
1, ρ2 = x2x

∗
2, ρ3 = x3x

∗
3 with

x3 = µ1x1 + µ2x2, and check (1) and

σ = 1
|µ1µ2|

(σ3 − |µ1|2σ1 − |µ|2σ2) = Re
√
σ1C
√
σ2

for a matrix C satisfying tr (CC∗) = 1 + |det(C)|2 ≤ 2.

Question Can we find a more explicit (and symmetric) conditions on x1, x2, x3,
and σ1, σ2, σ3 for the existence of Φ?
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A Numerical Scheme

(Choi, 1975) A linear operator Φ : Mn →Mm is a quantum operation if
and only if the (Choi) matrix P = (Φ(Eij))1≤i,j≤n ∈Mn(Mm) is
positive semi-definite with trΦ(Eij) = δij .

(D. Drusvyatskiy, C.K. Li, D. Pelejo, Y.L. Voronin, H. Wolkowicz, 2015)
General families. Construct a Choi matrix P = (Pij) ∈Mn(Mm) such
that ∑

i,j
(ρ`)ijPij = σ` for ` = 1, . . . , k.

One may then solve the problem by numerical methods such as positive
definite programming and alternating projections, etc.
One may impose additional (linear) constraints on Φ. For instance, Φ is
unital.

Question Can we impose the conditions such as mixed unitary?
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More questions

Can we impose additional conditions on quantum channels:

General quantum channels / operations Φ : Mn →Mn such that

Φ(X) =
r∑
j=1

FjXF
∗
j for all X ∈Mn,

where F1, . . . , Fr ∈Mn satisfy
∑r

j=1 F
∗
j Fj = In.

Unitary channels: Φ(X) = UXU∗ for some unitary U .

Mixed unitary channels: Φ(X) =
∑r

j=1 pjUjXU
∗
j for some unitary

U1, . . . , Ur and probability vector (p1, . . . , pr).

Unital channels: quantum channels Φ such that Φ(I/n) = I/n.

Evidently,

{Unitary operations} ⊆ {Mixed unitary operations}

⊆ {Unital operations} ⊆ {General quantum operations}.
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Approximation problems

Question For a given ε > 0, determine whether there is a quantum operation
Φ such that ‖Φ(ρj)− σj‖ < ε for all j = 1, . . . , k.

For two density matrices / quantum states ρ, σ, we can measure the
distance between them by a norm function: ‖ρ− σ‖.

Instead of considering a special norm, we obtain results for general
unitary similarity invariant (USI) norms.

That is, ‖UXU∗‖ = ‖X‖ for any U,X ∈Mn such that U is unitary.

Special cases include:

the operator norm ‖X‖sp = max{‖Xv‖ : v ∈ Cn, ‖v‖ = 1},

the trace norm ‖X‖tr = tr |X|, and

the Frobenius norm ‖X‖Fr = (tr (X∗X))1/2.
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Φ such that ‖Φ(ρj)− σj‖ < ε for all j = 1, . . . , k.

For two density matrices / quantum states ρ, σ, we can measure the
distance between them by a norm function: ‖ρ− σ‖.

Instead of considering a special norm, we obtain results for general
unitary similarity invariant (USI) norms.

That is, ‖UXU∗‖ = ‖X‖ for any U,X ∈Mn such that U is unitary.
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Approximation

There are results on the upper bound and lower bounds for d(Φ(ρ1), σ1)
for Φ ∈ S, where

S is the set of all unitary, mixed unitary, unital, or general channels, and

d(α, β) are different measures such as

‖α− β‖ for a unitary similarity invariant norm ‖ · ‖,

the Fedility function d(α, β) = F (α, β),

the relative entropy function d(α, β) = S(α||β).

We first describe results on F1 = {A} and F2 = {B}.
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Unitary channels: Φ(X) = UXU ∗

Based on known bounds on ‖A− UBU∗‖ for given Hermitian matrices
A,B ∈Mn and unitary U ∈Mn, we have the following.

Theorem
Let ‖ · ‖ be a USI norm, σ1, ρ1 are density matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For unitary channels Φ,
min ‖σ1 − Φ(ρ1)‖ occurs if and only if there is a unitary U such that

Uσ1U
∗ = diag (a1, . . . , an) and UΦ(ρ1)U∗ = diag (b1, . . . , bn);

max ‖σ1 − Φ(ρ1)‖ occurs if and only if there is a unitary U such that

Uσ1U
∗ = diag (a1, . . . , an) and UΦ(ρ1)U∗ = diag (bn, . . . , b1);
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General Quantum Channels: Φ(X) = ∑
FjXF ∗

j

Fact Let ρ, σ ∈Mn be density matrices. There is always a quantum channel Φ
such that

Φ(ρ) = σ.

Theorem
Let ‖ · ‖ be a USI norm, σ1, ρ1 are density matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For general quantum channels Φ,

min ‖σ1 − Φ(ρ1)‖ occurs if and only if Φ(ρ1) = σ1;
max ‖σ1 − Φ(ρ1)‖ occurs if and only if there is a unitary U such that

Uσ1U
∗ = diag (a1, . . . , an) and UΦ(ρ1)U∗ = diag (0, . . . , 0, 1).
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Mixed Unitary and Unital Channels

Theorem [Li and Poon, 2011]
Let ρ, σ ∈Mn be density matrices. The following are equivalent.

1 There exists a mixed unitary quantum channel Φ such that Φ(ρ) = σ.

2 There are unitary matrices U1, . . . , Un ∈Mn such that

σ = 1
n

(U1ρU
∗
1 + · · ·+ UnρU

∗
n) .

3 There exists a unital quantum channel Φ such that Φ(ρ) = σ.

4 λ(σ) ≺ λ(ρ), i.e., the sum of the k largest eigenvalues of σ is not larger
than that of ρ for k = 1, . . . , n− 1.
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Theorem (based on a result in [Li & Tsing, 1989])
Let ‖ · ‖ be a USI norm, σ1, ρ1 are density matrices with eigenvalues

a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For any unital channel Φ,

max ‖σ1 − Φ(ρ1)‖ occurs if and only if there is a unitary U such that

Uσ1U
∗ = diag (a1, . . . , an) and UΦ(ρ1)U∗ = diag (bn, . . . , b1);

min ‖σ1 − Φ(ρ1)‖ if and only if there is a unitary U such that

Uσ1U
∗ = diag (a1, . . . , an) and UΦ(ρ1)U∗ = diag (d1, . . . , dn),

where (d1, . . . , dn) is determined by the following algorithm
Step 0. Set (∆1, . . . ,∆n) = λ(ρ1)− λ(ρ2).

Step 1. If ∆1 ≥ · · · ≥ ∆n, then set (d1, . . . , dn) = λ(ρ1)− (∆1, . . . ,∆n) and stop.
Else, go to Step 2.

Step 2. Let 2 ≤ j < k ≤ ` ≤ n be such that

∆j−1 6= ∆j = · · · = ∆k−1 < ∆k = · · · = ∆` 6= ∆`+1.

Replace each ∆j , . . . ,∆` by (∆j + · · · + ∆`)/(`− j + 1), and go to Step 1.
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Examples

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let σ1 = 1
10 diag (4, 3, 3, 0) and ρ1 = 1

10 diag (3, 3, 3, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (3, 3, 3, 1) = 1
10 diag (1, 0, 0,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1, 0, 0,−1) 1
10 = diag (3, 3, 3, 1).

Example 2 Let σ1 = 1
10 diag (4, 3, 3, 0) and ρ1 = 1

10 diag (5, 2, 2, 1).
Apply Step 0:

Set (∆1, . . . ,∆4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (5, 2, 2, 1) = 1
10 diag (−1, 1, 1,−1).

Apply Step 2.

Change (∆1, . . . ,∆4) to 1
10 diag (1/3, 1/3, 1/3,−1).

Apply Step 1.

Set (d1, . . . , d4) = 1
10 diag (4, 3, 3, 0)− 1

10 diag (1/3, 1/3, 1/3,−1) = 1
30 diag (11, 8, 8, 3).
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Additional results

Consider the fidelity function F (ρ1, ρ2) = ‖ρ1/2
1 ρ

1/2
2 ‖1,

Theorem [Zhang, Fei, 2014]
Suppose ρ1, ρ2 have eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For unitary channels Φ,
maxF (ρ1,Φ(ρ2)) occurs if and only if there is a unitary U such that

Uρ1U
∗ = diag (a1, . . . , an), UΦ(ρ2)U∗ = (b1, . . . , bn);

minF (ρ1,Φ(ρ2)) occurs if and only if there is a unitary U such that

Uρ1U
∗ = diag (a1, . . . , an), UΦ(ρ2)U∗ = (bn, . . . , b1).

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above
minimum condition also holds for unital channels / mixed unitary channel,

and finding the maximum seems difficult.
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Theorem
Suppose ρ1, ρ2 have eigenvalues a1 ≥ · · · ≥ an and b1 ≥ · · · ≥ bn.

For unital channels, mixed unitary channels, or average unitary channels Φ,
maxF (ρ1,Φ(ρ2)) occurs if and only if there is a unitary U such that

Uρ1U
∗ = diag (a1, . . . , an), UΦ(ρ2)U∗ = diag (d1, . . . , dn),

where d1, . . . , dn are determined as follows.
Step 0. Suppose a1 ≥ · · · ≥ ar ≥ 0 = ar+1 = · · · = an. Let

a = (a1, . . . , ar), b = (b1, . . . , br), (dr+1, . . . , dn) = (br+1, . . . , bn).

Go to Step 1.

Step 1. Let k ∈ {1, . . . , r} be the largest positive integer such that

1
a1 + · · · + ak

(a1, . . . , ak) ≺
1

b1 + · · · + bk

(b1, . . . , bk).

Set
(d1, . . . , dk) =

a1 + · · · + ak

b1 + · · · + bk

(a1, . . . , ak).

If k = r, then exit. Else, replace r, a, b by r − k, (ak+1, . . . , ar), (bk+1, . . . , br) and go to Step 1.

Examples If (a1, . . . , an) ≺ (b1, . . . , bn), then (d1, . . . , dn) = (a1, . . . , an).
If (b1, . . . , bn) = (1/n, . . . , 1/n), then (d1, . . . , dn) = (1/n, . . . , 1/n).
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More results and questions

We also obtained results for general quantum channels, and other
functions on two density matrices such as the relative entropy:

S(ρ1||ρ2) = tr ρ1(log2 ρ1 − log2 ρ2).

There are many open problems.
For example, one may study the optimal lower and upper bounds of the
set

{D(ρ1,Φ(σ)) : Φ ∈ S, σ ∈ T }
for a set S of quantum channels, and a set T of quantum states.
Minimize/maximize d((Φ(ρ1), . . . ,Φ(ρk)), (σ1, . . . , σk)) for other
distance measure d?
one may start with the study of ‖Φ(ρ1 + iρ2)− (σ1 + iσ2)‖ for the a
special norm.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science



More results and questions

We also obtained results for general quantum channels, and other
functions on two density matrices such as the relative entropy:

S(ρ1||ρ2) = tr ρ1(log2 ρ1 − log2 ρ2).

There are many open problems.

For example, one may study the optimal lower and upper bounds of the
set

{D(ρ1,Φ(σ)) : Φ ∈ S, σ ∈ T }
for a set S of quantum channels, and a set T of quantum states.
Minimize/maximize d((Φ(ρ1), . . . ,Φ(ρk)), (σ1, . . . , σk)) for other
distance measure d?
one may start with the study of ‖Φ(ρ1 + iρ2)− (σ1 + iσ2)‖ for the a
special norm.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science



More results and questions

We also obtained results for general quantum channels, and other
functions on two density matrices such as the relative entropy:

S(ρ1||ρ2) = tr ρ1(log2 ρ1 − log2 ρ2).

There are many open problems.
For example, one may study the optimal lower and upper bounds of the
set

{D(ρ1,Φ(σ)) : Φ ∈ S, σ ∈ T }
for a set S of quantum channels, and a set T of quantum states.

Minimize/maximize d((Φ(ρ1), . . . ,Φ(ρk)), (σ1, . . . , σk)) for other
distance measure d?
one may start with the study of ‖Φ(ρ1 + iρ2)− (σ1 + iσ2)‖ for the a
special norm.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science



More results and questions

We also obtained results for general quantum channels, and other
functions on two density matrices such as the relative entropy:

S(ρ1||ρ2) = tr ρ1(log2 ρ1 − log2 ρ2).

There are many open problems.
For example, one may study the optimal lower and upper bounds of the
set

{D(ρ1,Φ(σ)) : Φ ∈ S, σ ∈ T }
for a set S of quantum channels, and a set T of quantum states.
Minimize/maximize d((Φ(ρ1), . . . ,Φ(ρk)), (σ1, . . . , σk)) for other
distance measure d?

one may start with the study of ‖Φ(ρ1 + iρ2)− (σ1 + iσ2)‖ for the a
special norm.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science



More results and questions

We also obtained results for general quantum channels, and other
functions on two density matrices such as the relative entropy:

S(ρ1||ρ2) = tr ρ1(log2 ρ1 − log2 ρ2).

There are many open problems.
For example, one may study the optimal lower and upper bounds of the
set

{D(ρ1,Φ(σ)) : Φ ∈ S, σ ∈ T }
for a set S of quantum channels, and a set T of quantum states.
Minimize/maximize d((Φ(ρ1), . . . ,Φ(ρk)), (σ1, . . . , σk)) for other
distance measure d?
one may start with the study of ‖Φ(ρ1 + iρ2)− (σ1 + iσ2)‖ for the a
special norm.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science



Thank you for your attention!
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