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Algorithm
u Definition of Algorithm 

Algorithm is a step-by-step procedure for solving a problem 
in a finite amount of time. It consists of :
§ Instructions
§ Input data
§ Output data

u Classes of Algorithms : Computer Science 
§ Searching algorithms
§ Sorting algorithms
§ Tree algorithms
§ Graph algorithms
§ Hashing algorithms
§ Parsing algorithms
§ . . . . . . .



Example : Algorithm
u Problem : Compute GCD
u Algorithm : Euclidean Algorithm

§ Input : Integers (L ≥ S)
§ Output : GCD of L, S 

GCD (int L, S)  
int  R;
while (S > 0) 
{ 

R = L % S;
L = S;
S = R; 

}
return (L)



u Algorithm : Power Algorithm

POWER (int X, int N)
if (N == 0) return 1;
else {    

factor = POWER(X, N/2)   
if  N%2 == 0  return factor*factor
else  return factor*factor*X

}

Example : Algorithm
u Problem : Compute XN

§ Input : Integers X, N

§ Output : XN



Example : Algorithm
u Problem : Sorting integers

§ Input : n unsorted integers  
u Algorithm : Selection Sort

Selection Sort (int list[n])
for (i = 0; i < n; i++)
{
1) Examine list[i] to list[n-1] 
2) Find the smallest integer 
3) Let it store list[min];
4) Swap list[i] and list[min]
}

§ Output : n sorted integers 



Performance Analysis
u Performance Analysis

n Space Complexity
- the amount of memory space used by the algorithm 

n Time Complexity
- the amount of computing time used by the algorithm

u Typically, the more (less) space, the less (more) time.

Thus, sometimes we need to trade off space vs. time.



Space Complexity
u Find a total sum of n numbers. Space = ?

u Addition of  two n x n matrices. Space = ?

u Representing an n x n sparse matrix. Space = ?

SUM (float list[ ], int n) 
sum = 0;
int i;
for (i = 0; i < n; i++)

sum = sum + list[i];
return sum;



Time Complexity

sum = 0;
for (i = 0;  i < 1000000; i++)    

sum = sum + i ;

u What is time complexity?
- Theoretical Speed : 106 (additions)
- Practical Speed : 10 msec. (Assume: Pentium III, 256M memory)

u Which criteria is more reasonable?
- “Theoretical” speed gives better criteria. Why?

u Time Complexity Criteria?
§ Theoretical Speed

- number of operations by performed by the algorithm.
§ Practical Speed

- the execution time performed by the algorithm.



Time Complexity

for (i=1; i<=n; i++) 

{ application code }
Time = ?

for (i=1; i<=n; i+=2) 

{ application code }

for (i=1; i<=n; i*= 2)
{ application code }

for (i=n; i>=1; i/=2)
{ application code }

for (i=1; i<=n; i++)  
for ( j=1; j<=n; j++)
{ application code } 

for (i=1; i<=n; i++)  
for ( j=1; j<=i; j++)
{ application code } 

for (i=1; i<=n; i++)  
for ( j=1; j<=n; j*=2)
{ application code } 

§ Linear § Quadratic

§ Dependent quadratic

§ Linear logarithmic

§ Logarithmic

Time = ?

Time = ?

Time = ?

Time = ?

Time = ?

Time = ?



Time Performances  : Big Oh(O)
u Which one is faster?

algorithm A algorithm B

f(n) = 10n g(n) = 1/2n
2

problem
Example :

u Given f(n) and g(n), we say that f(n) = O(g(n)) if there are positive 

constants c and n0 such that f(n) ≤ c·g(n) for all n ≥ n0.

u Note : c is implementation factor depending on H/W and S/W
environmental variants. If f(n) = aknk + ... + a1n + a0, then f(n) = O(nk).

g(n)

f(n)

input size n 

time

Break even point n0 exists no matter 
what c value is. 

n0



Class of Time Complexities
u Polynomial Time

§ O(1) : Constant  
§ O(log2n)  
§ O(n)  
§ O(n·log2n)    
§ O(n2)      
§ O(n3)      

. . . . . .

§ O(nk) 

u Exponential Time  
§ O(2n) 
§ O(n!)
§ O(nn) 



Class of Time Complexities
u Which one is bigger?

n O(nk) vs O(2n)
n O(nk) : Easy, Reasonable, Mostly solved within by O(n3)
n O(2n) : Hard, Cannot be solved in practice.

u Ordering of complexities
§ O(1) < O(log2n) < O(n) < O(nlog2n) < O(n2) < O(n3) < O(2n) < O(n!)

u Which are meaning of these comparisons?
§ O(n) vs O(1)
§ O(n) vs O(log2n)
§ O(n2) vs O(n·log2n)
§ O(n3) vs O(n2)



Growth of Function Values
Seconds Equivalent

102 1.7 mins
103 17  mins
104 2.8 hrs
105 1.1 days
106 1.6 weeks
107 3.8 months
108 3.1 years 

109 3.1 decades

Powers of 2
210 = 103

220 =  106 

230 =  109

. . . . . . 

Logarithmic
log2103 =  10     
log2106 =  20    
log2109 =  30

. . . . . . .   



Example : Sorting

u Classic Problem in Computer Science : Still many researches!

u Sorting is essential for solving many problems efficiently.

u 25% ~ 50 of total time for solving problem is spent for sorting.

u Performance Criteria : Number of Comparisons

u Selection, Bubble, Insertion, Heap, Shell, Quick, Merge 

u O(n2)  or O(nlog2n) 

(35 38 70  75 12 25 18 54  65  90 86)

(12 18 25 35 38 54  65 70 75 86 90) : sorted

sorting



Sorting

u How many comparison operations? (Input size n) 

§ Selection Sort

§ Bubble Sort

§ Insertion Sort

§ Quick Sort

§ Merge Sort

list : 5 37 1 61 15

1 2 3 4 .  .  .

26 11 59 48

0



Comparison: Sorting Methods
Method Average Worst Extra Space 

Selection          O(n2)             O(n2)            O(1)               
Bubble             O(n2)             O(n2)            O(1)              
Insertion           O(n2)             O(n2)            O(1)              
Quick            O(nlog2n)          O(n2)          O(log2n)          
Merge           O(nlog2n)       O(nlog2n)          O(n)               

§ Insertion sort is the best for small n. 
§ Quick sort is the best in average case.
§ Merge sort is the best in worst case, but we need extra space.
§ We usually combine Insertion, Quick, and Merge.



Sorting : Performance 
§ Algorithms by Sedgewick

ü PC : 108 comparisons/sec

§ Good algorithms are better than good ones.

n = 103 n = 106 n = 109

PC 0.3sec 6min

instant instant

instant

instant

Quick Sort (O(nlog2n))

Super

n = 103 n = 106 n = 109

PC 1sec 18min

instant instantinstant

Merge Sort (O(nlog2n))

Super

instant

n = 103 n = 106 n = 109

PC

Super

2.8hrs 317yrs

1sec 1.7wks

instant

instant

Insertion Sort (O(n2)) 

§ Good algorithms are better than supercomputers.

ü Super : 1012 comparisons/sec



Practical Complexities
§ Sequential Search : O(n)
§ Binary Search : O(log2n)
§ External (B-Tree) Search : O(logfn), f ≈ 133 
§ Selection, Bubble, Insertion Sort : O(n2)    
§ Quick, Heap, Merge Sort : O(n·log2n) 
§ Euler Cycle : O(n2)
§ Minimal Spanning Tree : O(n·log2n) 
§ Shortest Paths : O(n2)
§ Matrix Addition : O(n2)
§ Matrix Multiplication : O(n3) or O(n2∙81)
§ Satisfiability Problem : O(2n)
§ Hamiltonian Cycle : O(n!)
§ Graph Coloring : O(nn)
§ . . . . . . . . . .
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Data Structures
u How do we store the following data in memory efficiently?

§ Matrix Operations

§ Mazing Problem

§ Bank Customers Service

§ UNIX File Directory 

§ Baseball Tournament

§ Airline Flights Connection

§ Given n integers, find an arbitrary number?

§ Given n integers, find a maximum number?

§ Courses Road Map

§ . . . . . . .
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Data Structures
u Data Structure

§ How do we store data in a (mostly) memory?
§ We need to specify data structure to organize them.

§ Choice of different data structures gives us different algorithms.

§ Good data structures are essential for efficient algorithms.

Data StructuresMemory

. . .

. . .

View

Implement



21

Array/Linked List
Array

§ A linear list with (index, value)
§ Consecutive memory locations
§ Static Allocation : Compile Time
§ Reads/writes : O(1)
§ Insert/deletes : O(n)

Linked List
§ A linear list with pointers(links)
§ Non-Consecutive memory locations
§ Dynamic Allocation : Run Time
§ Reads/writes : O(1)
§ Insert/deletes : O(1)
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Two Approaches : Arrays vs Linked Lists
u Lists (1 dimension) : Searching, Sorting, . . .

u Matrix Operations

u Binary Trees : Especially, Complete binary tree

u Trees

u Heaps

u Graphs : Roads, Maps, SNS Networks, . . . 



Array : Sparse Matrix
u Sparse Matrix : Most elements are 0’s; Real values are rare. 

Examples : Airline Flights, Web Pages Matrix, . . 

u (Conventional) 2-D array

§ A[m, n] (m : #rows, n : #columns) 

§ Memory Usage : t / (m * n)  (t : #non-zeros)

§ Very inefficient!

  col 0 col 1 col 2 col 3 col 4 col 5  

row 0  15 0 0 22 0 -15  

row 1  0 11 3 0 0 0  

row 2  0 0 0 -6 0 0  

row 3  0 0 0 0 0 0  

row 4  91 0 0 0 0 0  

row 5  0 0 28 0 0 0  

 

 



Array : Sparse Matrix
 row col value 

 [0] 

 [1] 

 [2] 

 [3] 

 [4] 

 [5] 

 [6] 

 [7] 

 [8] 

6 

0 

0 

0 

1 

1 

2 

4 

5 

6 

0 

3 

5 

1 

2 

3 

0 

2 

8 

15 

22 

-15 

11 

3 

-6 

91 

28 
 

 

u Compressed 2-D array

§ Stores only non-zero values; By raw-major order;

§ <row position, column position, non-zero value> 

§ Memory Usage : ∝t (independent of matrix size)

§ Efficient!



Stack
§ A linear List with top and bottom. 
§ All insertions and deletions occur at top.
§ Push(insert) and Pop(delete)
§ Top values grow and shrink.
§ All items except top are invisible.  
§ LIFO (Last-In First-Out) Push

Pop

Stack



Implementing Stack

§ Create-Stack

§ Push

§ Pop

§ Stack-Full

§ Stack-Empty

u Array vs Linked Lists

u Implementation is easy, Very efficient : O(1)

u What about multiple stacks? 



Applications : Stack
u Evaluation of Arithmetic Expressions 

§ 3+2, 3+5*2, 6/2-3+4*2, (2/(8%4+(3*5))*(7-3)), . . .

u Parsing (Pattern Matching) 
§ anbn, a2nbn, palindromes, . . 

u Function Calls/Returns    
§ Call function A, call B, Call C; How return?

n Maze Problem

n Depth First Search



Queue

u A linear List with front and rear. 

u All insertions (enqueue) : rear, 
All deletions (dequeue) : front

u All items except front and rear are 
invisible.  

u FIFO (First-In First-Out) 

Queue



Implementing Queue

§ Create-Queue

§ Insert

§ Delete

§ Queue-Full

§ Queue-Empty

u Array vs Linked Lists

u For array, implementation is not so easy : O(n)

à Use Circular Queue : O(1)

u What about multiple queues? 
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Applications : Queue
n Key board Data Buffers 

n Job Processing (printer, CPU processor) : FCFS

n Breadth First Search

n Categorizing data into groups

n Waiting times of customers at call center

n Deciding # of cashiers at super market 

n Traffic Analysis



Tree
§ A non-linear list with nodes
§ A special node : Root 
§ Parent : Child = 1 : m relationship
§ Leaf node : Node with no child
§ Connected
§ Acyclic Graph 

Binary Tree 
§ Every node has at most 2 children.

(0, 1, or 2)
§ Order of children is important.
§ Connected
§ Acyclic Graph 

Trees 
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Types of Binary Trees

D

B

E F

A

G

C

Full

D

B

E

A

C

Complete Skewed

C

E

B

D

A

General

D

B

F

A

G

C

u What is height (h) of a binary tree
§ n : #nodes of a binary tree; 
§ h £ n £ 2h – 1 
§ Thus, log2(n+1) £ h £ n
§ n =1,000? n =1,000,000?

u Question : What kind of trees do you prefer?



Implementing Binary Trees
u Arrays 

§ 1-D array : A[ ] 
§ Parent[i] = i/2, Lchild[i] = 2i, Rchild[i] = 2i+1

u Linked Lists 
§ Two links for each node
§ Lchild, RChild

b

a

c

d e

2 3

4 7 5
a b c d g

1 2 3 4 .  .  . 7

1

Lchild data Rchild

u How many memories needed? 

u How about trees? Array vs. LL?
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Applications : Trees
u Hierarchical Information

u Tree Traversals : INORDER, PREORDER, POSTORDER

u Internal Searching : BST, AVL Tree, Red/Black Tree, 2-3 Tree, . .

u External Searching : B Tree, B+ Tree, . . 

u Decision Trees : Classifications

u Min/Max Heaps



Graphs
Graph : G = (V, E)  

§ V : a (non-empty) set of  vertices 
§ G : a set of edges Í (V ´ V)
§ Undirected : (u, v) = (v, u)
§ Directed : (u, v) ≠ (u, v)



Implementing Graph
u Adjacency Matrix : O(n2)

§ 2-D array : A[n, n] (n : #vertices)
§ A(i, j) = 1 if vertex i and j are adjacent

u Adjacency List : O(n +e)
§ Each node consists vertex and link.
§ For each linked list i, it contains 

vertices adjacent from vertex i

= 0 otherwise    



Applications : Graphs
u Depth First Search, Breadth First Search

u Connectivity 

u Minimal Spanning Trees

u Articulation Points    

u Topological Sorting

u Activity On Vertex(AOV) Networks 

u Activity On Edge(AOE) Networks 
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Exercise : Searching
n Given n numbers, find an arbitrary number X; 

Design an efficient data structure; Search, Insert, Delete;

§ Array : Unordered 

§ Array : Ordered (Too much burden!!)

§ Binary Search Tree

§ AVL Tree

§ Quad, Octal, . .  Tree

§ B-Tree (External Searching)



Binary Search Tree(BST)
BST :

(1) Binary Tree
(2) Every node’s key K is 
① larger than all keys in its left 

subtree ② smaller than all keys in 
its right subtree. 

all keys < K all keys > K

K

left subtree right subtree
15

12

10

17

2016

9

6

5 3

BSTs

11

Search/Insert/Delete : Time

Ex: Search(11), Search(18), Insert(18), . .

Height(h) of a BST :

h



Performance : BST

.  .  .  .  .  .                      . . .             . .     

Average Case : 

O(log2n) 

.

..

.
.
.

. .
. .

.

.

.
.....
.

.

.

.

..

...
.
.

. Worst Case : 

O(n) 
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Improving Worst Case 
u Basic Idea : Balanced + Many Children

§ Binary Search Tree

§ AVL Tree

§ 2-3-4 Tree

§ Quad, Octal Tree

§ B-Tree (External Searching)



Performance Comparison : Searching

Data Structures Worst Average

Unordered  Array O(n) O(n)

Ordered  Array O(log2n) O(log2n)

Binary Search Tree O(n) O(log2n)

AVL Tree O(log2n) O(log2n)

2-3-4 Tree O(log2~4n) O(log2~4n)

B Tree (External) O(log133n) O(log133n)
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Exercise : Searching Maximum Value
n Given n numbers, find a maximum number X; 

Application : Priority Queue

Design an efficient data structure; Search, Insert, Delete;

§ Array : Unordered 

§ Array : Ordered 

§ Binary Search Tree

§ Max Heap



Max Heap
Max Heap :

(1) Complete binary tree
(2) Value of each node is no 

smaller than its children’s 
values. 

all keys ≤ K all keys ≤ K

K

left subtree right subtree
14

12

10

7

8 6

9

6

5

3

14

12

10

5

8 6

9

6

5

3

§ Note : Root of a max heap always has the largest value.

Max Heaps Not Max Heaps



Performance : Max Heap

§ Insert : O(log2n)

§ Delete : O(log2n) 

§ Insert  40, 45, . .      

§ Delete, Delete, . . 

25

1820 12 16

10

28

9

30

15



Data Structures Insertion Deletion

Unordered  Array O(1) O(n)

Unordered  Linked list O(1) O(n)

Ordered  Array O(n) O(1)

Ordered  Linked list O(n) O(1)

Binary Search Tree O(n)  O(n)

Max Heap O(log2n) O(log2n)

Performance Comparison : Find Max



Constructing Algorithms
u Constructing Algorithm : Two Methods

(1) Iteration
§ while-loop, for-loop, repeat-until, . . . 
§ Conventional Methods

(2) Recursion
§ Defined by calling itself.
§ Mostly based on divide and conquer
§ Simple, concise, high readability

u For every iterative algorithm, there exists an equivalently
recursive algorithm; The reverse also is true.



Example : Factorial Number
u Iteration

u Recursion

int factorial (int n)
i = 1; result = 1;
while (i <= n)
{ result = result * i;

i++;
}

return (result);

int Factorial (int n)
if (n==0 ) return(1);
else return (n*Factorial(n-1));

§ Mathematical § Algorithmic 



Designing Recursion
u Rules for designing a recursion

1. Base case
§ Trivial case 
§ Usually, n = 0 or n = 1
§ For Termination 

2. General case (= Recursive step)
§ Break down the problem into sub-problems 

which are the same, but smaller size.
§ Usually, n > 0 or n > 1

3. Combine base case and general case.



Binary Search
u Find an integer X among n ( > 1 ) integers; list[n]

(All integers are stored by increasing order: Sorted)

u Construct Binary Search algorithms by recursion;
(Use 3 variables : mid, left, right)

1. Base Case : Termination Condition
(1) X is found : ?
(2) X is not found : ?

2. General Case : Break a list into small size
(1) X is in the first half (list[mid] > X) : ?
(2) X is in the second half (list [mid] < X) : ?



Binary Search
Bin-Search (list[], X, left, right) 
int mid;
if (left <= right)  {
mid = (left + right)/2;
if  X < list[mid], Bin-Search(list [], X, left, mid–1);
else if  X == list[mid], return(mid);
else,  Bin-Search(list[], X, mid+1, right);    }

u What is time complexity? (T(n) = T(n/2) + 1)



Binary Tree Traversal
u We want visit every node in a binary tree.

§ INORDER :   Left, Visit, Right (LVR)
§ PREORDER :  Visit, Left, Right (VLR)
§ POSTORDER : Left, Right, Visit (LRV)

a

b c

d e f

g h i j

INORDER(p)
if (p != NULL) 
INORDER(p->Lchild)
print(ptr->data)
INORDER(p->Rchild) 

POSTORDER(p)
if (p != NULL) 
PREORDER(p->Lchild)
PREORDER(p->Rchild)
print(ptr->data)

start(p)



Computing XN

POWER (int X, int N)
if (N == 0) return 1;
else {    

factor = POWER(X, N/2)   
if  N%2 == 0  return  factor*factor
else  factor*factor*X

}

XN =(XN/2 * XN/2 )  if N : even

XN =(XN/2 * XN/2 )*X if N : odd

N = 8; 28 =24 *24, 24 = 22 *22, 22 = 21 *21 

N = 9; 29 =24 *24 *21, 24  = 22 *22   22  = 21 *21 



Towers of Hanoi
u Base case : n = 1

: Move 1 disk from source to dest
u General case : n > 1   

(1) Move (n - 1) disks from source
to aux : (Use des as aux)

(2) Move (n - 1) disks from aux
to des : (Use source as aux)

towers (int n, source, dest, aux)
if (n == 1) // base case

print (Move from to, source, dest);
else { // general case

towers (n - 1, source, aux, dest);
towers (1, source, dest, aux);
towers (n - 1, aux, dest, source); } 



Iterative version Recursive version

int factorial (int n)
{ i = 1;

result = 1;
while (i <= n)
{ result = result * i;

i++;
}

return (result);}

int Factorial (int n)
{

if ( n == 0 ) return(1);
else return (n * Factorial (n - 1));

}

u Which algorithm is more efficient? 

Recursion is Inefficient . . .



Pros/Conse : Recursion
u Pros/Cons

(+) Coding is simple, concise, clear.
(+) Implementation is hidden; 
(+) High understandability, readability. 
(-) Space Overhead
(-) Time Overhead

u When do we need a recursion?  
Do not use a recursion if the answer of the the questions is ‘no’:

1. Is the algorithm naturally suited to recursion?

2. Is the recursive solution shorter and more understandable?

3. Does the recursive solution run within acceptable time and space?



Algorithm Design Techniques
u Brute Force

u Greedy method

u Divide and Conquer 

u Dynamic Programming 

u Backtracking 



u A straightforward approach to; It tries to find all possible searching 
spaces.

u Easiest approach and useful for solving small size of a problem.

u Exhaustive search: May be exponential! 

u Examples : 
§ Computing an (by multiplying a*a*…*a)
§ Selection Sort, Bubble Sort
§ Shortest Paths
§ Sequential search 

Brute Force



u At each solving step, choose the choice what it looks best; The
choice must be locally optimal. Can’t see the global solution.

u Making the locally optimal choice at each stage with the hope of
finding a global optimum. For example, road driving, card playing, . .

u This method always does not give optimal solution, but it works 
for many problems in a reasonable time. 

u Examples : 
§ Minimal Spanning Tree
§ Shortest Paths 
§ Fractional Knapsack 
§ Huffman Coding 

Greedy Method



Spanning Tree
u Spanning tree G’ is a subgraph of  a graph G such that

(1)  V(G’) = V(G) = n  (n : # vertices)
(2)  G’ is connected.
(3)  G’ has (n – 1) edges.
(4)  If we add an edge into G’, then a cycle is generated. 
(5) If we delete an edge from G’, then disconnected. 

Graph G Some Spanning Trees G’ of G



Minimal Spanning Tree (MST)

u Greedy Method : (Kruskals’s algorithm : O(elog2e))
§ (1) At each step, choose an edge with smallest weight.
§ (2) If the selected edge creates a cycle, then discard it.
§ (3) Repeat (1), (2); If sum of total edges are (n – 1), then done! 

Weighted Graph(G) MST(G’)

u MST is a spanning tree with minimum total weight.

2 4 6 3

8 10 14

127

9

a

b

c

d

e

f

g

h

2 6 3

a

b

c

4

d

e

f

g

47

10 14



Divide and Conquer
u Divide a problem into many smaller sized sub-problems.

u Independently solve each sub-problem and then combine the 
sub-instance solutions to yield a solution for the original
problem. 

u The size of the problem is usually reduced by a factor (e.g., half
the input size).

u Examples : 
§ Binary Search
§ Quick Sort
§ Merge Sort
§ Strassen’s Matrix Multiplication 
§ Computing an



u Given a list of n elements (e.g., integers):
§ Pick one element to use as pivot.
§ Partition elements into two sub-lists:

Ø Left sub-lists L : Elements less than or equal to pivot
Ø Right sub-lists R : Elements greater than pivot

§ Recursively sort sub-list L and R
§ Combine the results

Quick Sort (Top 10 algorithms in 20th Century)



Quick Sort
Quicksort (list[ ], int left, right)

Partition; (list[ ], pivot)  
Quicksort (list, left, j-1);      
Quicksort (list, j+1, right);   

u Assume : Pivot is chosen as median of three.  



Quick Sort : Time Complexity
u Worst Case 

§ When the sub-lists are completely biased
§ Pivot is chosen as a smallest (largest) key for each split

§ T(n) = T(n – 1) + c·n

§ O(n2)
§ Rarely happens

u Average Case 
§ When the sub-lists are likely balanced
§ Pivot is chosen as a random or median of three

§ T(n) = 2·T(n/2) + c·n 

§ O(n·log
2
n)

§ Fastest known sorting algorithm in practice



Dynamic Programming 
u One drawback of “Divide and Conquer” is that the same 

computations repeatedly for identical sub-problems may arise. 

u Dynamic Programming can avoid this drawback by defining the 
recurrence relation.  

u Solve small sized sub-problems and store its result for later.

u The intermediate result can be reused for bigger problem. 

u Examples :
§ Fibonacci Number
§ Warshall Algorithm
§ All Pairs Shortest Paths 
§ 0/1 Knapsack
§ Matrix Chain Products



All pairs shortest paths
u Given a directed graph G with n vertices, find the shortest paths

between every pairs of vertices

u Brute Force Approach : 

u Dynamic Approach : Construct solution through series of matrices 

using increasing subsets of vertices allowed as intermediate.  

3

4
2

1
4

1
6 1

5

3

0    ∞   4    ∞ 
1 0    4    3 
∞   ∞   0    ∞
6    5    1    0

Adjacency MatrixGraph

1

1
2
3
4

2 3 4



All pairs shortest paths
u We define as Dk[i,j] as : length of the shortest path from i to j

without going through any vertex greater than k.

Dk[i,j] =  min {Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]}

§ Without going through k : Dk-1[i,j] 

§ Going through k : Dk-1[i,k]+Dk-1[k,j]

Dk-1[i, k] 

i

j

k
source

dest

Dk-1[i, j] 

Dk-1[k, j] 

intermediate

u Our goal : k = n; Compute Dn[i, j] for every pair of vertices i, 
j where i, j, k in [1, . . . n]



All pairs shortest paths

u For example, D1[2, 3] = min {D0[2, 3], D0[2, 1]+D0[1, 3]}
= min {∞, 2+3} = 5

1      2      3      4

0   ∞ 3    ∞ 
2   0   ∞    ∞
∞   7   0    1
6   ∞   ∞   0

D0  :

0   ∞   3   ∞ 
2   0    5 ∞
∞   7   0    1
6   ∞   9 03 1

3

2

6

7

4

1 2

0   ∞  3   ∞
2   0   5   ∞
9 7   0   1
6   ∞  9   0

0   10 3   4
2    0    5   6
9    7    0   1
6   16 9   0

0   10   3   4
2    0    5   6
7 7    0   1
6   16   9   0
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1
2
3
4

1     2      3      4

1     2      3      4 1      2       3      4
1    

D1  :

D2  : D3  : D4  :

2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

u Compute D4[i, j] for every pair of vertices i, j;



All pairs shortest paths
u Floyd Algorithm 

u Time Complexity : O(n3)

u Space Complexity : O(n2)

u Note : Works on graphs with negative edges but without 
negative cycles. 

Dk[i, j] = min {Dk-1[i, j], Dk-1[i, k] + Dk-1[k, j]}

for (k=1; k<=n; i++)  
for (i=1; i<=n; i++)  

for ( j=1; j<=n; j++)  



Backtracking
u A sort of brute force approach, but additional condition that 

only the possible candidate solutions are considered.

u A systematic searching method by pruning searching spaces; 
This is to avoid unnecessary efforts as early as possible. 

u Upon failure, we can go back to the previous choice simply by 
returning a failure node. 

u Backtracking vs. DFS

u Examples : 
§ Maze Problem
§ N-Queens Problem
§ Graph Coloring
§ Hamiltonian Cycle
§ Data Mining : Apriori Algorithm



Backtracking

1
2
3

B12

1
2
3

B12
4
5

B9
B8

1
2
3

B12
4
5

B9
B8
6
7

1
2
3

B12
4
5

B9
8

end

1
2
3

B12
4
5
9
10
11

end end

1
2
3
12
13

B17
14
15
16

goal

At 4 At 6 At 1st end At 2nd end At 3rd end At goal



Backtracking
u In backtracking, we explore each node, as follows:
u To explore node N:

1. If N is a goal node, return “success”
2. If N is a leaf node, return “failure”
3. For each child C of N,

3.1. Explore C
3.1.1. If C was successful, return “success”

4. Return “failure”

Failure

Start
Success!

Success!

Failure



Hard Problems
u So far, many problems can be solved by efficient algorithms. 

u In other respect, for many problems, any efficient algorithms have 
not been found; What’s worse, for such problems, we can’t even tell
whether or not an efficient solution might exist. 

u Programmers : Why can not find such efficient algorithms? 
Theoreticians : Why can not find any reason why these problems

should be difficult?

u Consider the following problems;
§ Easy : Is there a path from x to y with weight ≤ M 

- Shortest Path : O(n)
§ Hard(?) : Is there a path from x to y with weight ≥ M

- Longest Path : O(2n) 



Hard Problems
u P Problems

§ Can be solved by deterministic algorithms in polynomial time.
§ Can be solved with efficient amount of time.
§ Searching, Soring, . . . 

u NP Problems
§ Can be solved by non-deterministic algorithms in polynomial time.
§ For many problems, only exponential time algorithms are known.

(Deterministic polynomial time algorithms are not known (so far).)
§ Can not be solved with efficient amount of time.
§ Satisfiability, Graph Coloring, . . .  

u Relationship between P and NP
§ Clearly, P ⊆ NP (Any problem in P is in NP)
§ The biggest open problem in Computer Science;

- Is P ⊂ NP or P = NP ?
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Unsolvable (Undecidable) Problems
u Is every problem is solvable? 

§ The number algorithms is countably infinite. 
§ The number of problems is un-countably infinite. 
§ There exist some problems not solvable by any algorithms. 
§ There exist infinite number of problems not solvable by computers.
§ Turing-Undecidable 

u Examples 
§ Post Correspondence Problem(PCP)
§ Halting Problem 
§ Ambiguity Problem
§ . . . . . . . 
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Conclusions To Remember
u Lesson 1 :

Good algorithms are better than super computers. 

u Lesson 2 : 
Good algorithms are better than good algorithms.

u Lesson 3 :
Good data structures are essential for good algorithms.

u Lesson 4 :
Try to remember a few well known algorithms. 

u Lesson 5 :
Try to learn programming languages and exercise coding.


