Introduction :

Data Structures and Algorithms

성균관대학교 컴퓨터공학과
데이터베이스 연구실
김응모

Algorithm

- Definition of Algorithm

Algorithm is a step-by-step procedure for solving a problem in a finite amount of time. It consists of :

- Instructions
- Input data
- Output data
- Classes of Algorithms: Computer Science
- Searching algorithms
- Sorting algorithms
- Tree algorithms
- Graph algorithms
- Hashing algorithms
- Parsing algorithms
-

Example: Algorithm

- Problem : Compute GCD
- Algorithm : Euclidean Algorithm
- Input : Integers ($\mathrm{L} \geq \mathrm{S}$)
- Output: GCD of L, S

```
GCD (int L, S)
    int R;
    while (S > 0)
    {
        R = L % S;
        L = S;
        S = R;
    }
    return (L)
```


Example: Algorithm

- Problem : Compute X ${ }^{N}$
- Algorithm : Power Algorithm
- Input: Integers X, N
- Output: XN

```
POWER (int X, int N)
    if (N == 0) return 1;
    else {
        factor = POWER(X,N/2)
        if N%2 == 0 return factor*factor
        else return factor*factor*X
        }
```


Example: Algorithm

- Problem : Sorting integers
- Algorithm : Selection Sort
- Input : n unsorted integers
- Output : n sorted integers

Selection Sort (int list[n])
for ($\mathrm{i}=0 ; \mathrm{i}$ < $\mathrm{n} ; \mathrm{i}++$)
\{

1) Examine list[i] to list[n-1]
2) Find the smallest integer
3) Let it store list[min];
4) Swap list[[] and list[min]

Performance Analysis

- Performance Analysis

- Space Complexity
- the amount of memory space used by the algorithm
- Time Complexity
- the amount of computing time used by the algorithm
- Typically, the more (less) space, the less (more) time. Thus, sometimes we need to trade off space vs. time.

Space Complexity

- Find a total sum of n numbers. Space $=$?

```
SUM (float list[ ], int n)
    sum \(=0\);
    int i;
    for ( \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
        sum = sum + list[i];
    return sum;
```

- Addition of two $\mathrm{n} \times \mathrm{n}$ matrices. Space $=$?
- Representing an $\mathrm{n} \times \mathrm{n}$ sparse matrix. Space $=$?

Time Complexity

- Time Complexity Criteria?
- Theoretical Speed
- number of operations by performed by the algorithm.
- Practical Speed
- the execution time performed by the algorithm.

```
sum = 0;
for (i = 0; i < 1000000; i++)
    sum = sum + i;
```

-What is time complexity?

- Theoretical Speed : 10^{6} (additions)
- Practical Speed : 10 msec . (Assume: Pentium III, 256M memory)
- Which criteria is more reasonable?
- "Theoretical" speed gives better criteria. Why?

Time Complexity

- Linear

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
& \quad\{\text { application code }\}
\end{aligned}
$$

Time = ?

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}+=2) \\
& \quad\{\text { application code }\}
\end{aligned}
$$

Time = ?

- Logarithmic

$$
\begin{gathered}
\text { for }\left(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}^{\star}=2\right) \\
\{\text { application code }\}
\end{gathered}
$$

Time = ?

$$
\text { for }(i=n ; i>=1 ; i /=2)
$$

$$
\text { \{ application code \} }
$$

- Quadratic

$$
\begin{aligned}
& \text { for }(i=1 ; i<=n ; i++) \\
& \quad \text { for }(j=1 ; j<=n ; j++) \\
& \quad\{\text { application code }\}
\end{aligned}
$$

Time = ?

- Dependent quadratic

$$
\begin{gathered}
\text { for }(i=1 ; i<=n ; i++) \\
\quad \text { for }(j=1 ; j<=i ; j++) \\
\{\text { application code }\} \\
\text { Time }=?
\end{gathered}
$$

- Linear logarithmic

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
& \text { for }\left(\mathrm{j}=1 ; j<==\mathrm{n} ; \mathrm{j}^{\star}=2\right) \\
& \{\text { application code }\} \\
& \text { Time }=?
\end{aligned}
$$

Time Performances : Big Oh(O)

- Which one is faster?

Example:

- Given $f(n)$ and $g(n)$, we say that $f(n)=\mathbf{O}(g(n))$ if there are positive constants c and n_{0} such that $f(n) \leq c \cdot g(n)$ for all $n \geq n_{0}$.

- Note : c is implementation factor depending on H/W and S/W environmental variants. If $f(n)=a_{k} n^{k}+\ldots+a_{1} n+a_{0}$, then $f(n)=O\left(n^{k}\right)$.

Class of Time Complexities

- Polynomial Time
- O(1) : Constant
- O($\log _{2} n$)
- O(n)
- $O\left(n \cdot \log _{2} n\right)$
- O(n^{2})
- O(n $\left.{ }^{3}\right)$
- O(nk)
- Exponential Time
- O(2n)
" O(n!)
- O(nn)

Class of Time Complexities

- Which one is bigger?
- $\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$ vs $\mathrm{O}\left(2^{\mathrm{n}}\right)$
- $O\left(n^{k}\right)$: Easy, Reasonable, Mostly solved within by $O\left(n^{3}\right)$
- $\mathrm{O}\left(2^{\mathrm{n}}\right)$: Hard, Cannot be solved in practice.
- Ordering of complexities
- $\mathrm{O}(1)<\mathrm{O}\left(\log _{2} \mathrm{n}\right)<\mathrm{O}(\mathrm{n})<\mathrm{O}\left(\operatorname{nlog}_{2} \mathrm{n}\right)<\mathrm{O}\left(\mathrm{n}^{2}\right)<\mathrm{O}\left(\mathrm{n}^{3}\right)<\mathrm{O}\left(2^{\mathrm{n}}\right)<\mathrm{O}(\mathrm{n}!)$
- Which are meaning of these comparisons?
- $O(n)$ vs $O(1)$
- $O(n)$ vs $O\left(\log _{2} n\right)$
- $O\left(n^{2}\right)$ vs $O\left(n \cdot \log _{2} n\right)$
- $O\left(n^{3}\right)$ vs $O\left(n^{2}\right)$

Growth of Function Values

$\frac{\text { Seconds }}{10^{2}}$	$\frac{\text { Equivalent }}{1.7 \mathrm{mins}}$
10^{3}	17 mins
10^{4}	2.8 hrs
10^{5}	1.1 days
10^{6}	1.6 weeks
10^{7}	3.8 months
10^{8}	3.1 years
10^{9}	3.1 decades

$$
\begin{gathered}
\text { Powers of } 2 \\
\hline 2^{20}=10^{3} \\
2^{20}=10^{6} \\
2^{30}=10^{9}
\end{gathered}
$$

	Time for $f(n)$ instructions on a 10^{9} instr/sec computer						
n	$f(n)=n$	$f(n)=\log _{2} n$	$f(n)=n^{2}$	$f(n)=n^{3}$	$f(n)=n^{4}$	$f(n)=n^{10}$	$f(n)=2^{n}$
10	$.01 \mu \mathrm{~s}$	$.03 \mu \mathrm{~s}$	$.1 \mu \mathrm{~s}$	$1 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	10 sec	$1 \mu \mathrm{~s}$
20	$.02 \mu \mathrm{~s}$	$.09 \mu \mathrm{~s}$	$.4 \mu \mathrm{~s}$	$8 \mu \mathrm{~s}$	$160 \mu \mathrm{~s}$	2.84 hr	1 ms
30	$.03 \mu \mathrm{~s}$	$.15 \mu \mathrm{~s}$	$.9 \mu \mathrm{~s}$	$27 \mu \mathrm{~s}$	$810 \mu \mathrm{~s}$	6.83 d	1 sec
40	$.04 \mu \mathrm{~s}$	$.21 \mu \mathrm{~s}$	$1.6 \mu \mathrm{~s}$	$64 \mu \mathrm{~s}$	2.56 ms	121.36 d	18.3 min
50	$.05 \mu \mathrm{~s}$	$.28 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	$125 \mu \mathrm{~s}$	6.25 ms	3.1 yr	13 d
100	$.10 \mu \mathrm{~s}$	$.66 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	1 ms	100 ms	3171 yr	$4 * 10^{13} \mathrm{yr}$
1,000	$1.00 \mu \mathrm{~s}$	$9.96 \mu \mathrm{~s}$	1 ms	1 sec	16.67 min	$3.17 * 10^{13} \mathrm{yr}$	$32 * 10^{283} \mathrm{yr}$
10,000	$10.00 \mu \mathrm{~s}$	$130.03 \mu \mathrm{~s}$	100 ms	16.67 min	115.7 d	$3.17 * 10^{23} \mathrm{yr}$	
100,000	$100.00 \mu \mathrm{~s}$	1.66 ms	10 sec	11.57 d	3171 yr	$3.17 * 10^{33} \mathrm{yr}$	
$1,000,000$	1.00 ms	19.92 ms	16.67 min	31.71 yr	$3.17 * 10^{7} \mathrm{yr}$	$3.17 * 10^{43} \mathrm{yr}$	

Example: Sorting

- Classic Problem in Computer Science : Still many researches!
- Sorting is essential for solving many problems efficiently.
- 25% ~ 50 of total time for solving problem is spent for sorting.
- Performance Criteria : Number of Comparisons
- Selection, Bubble, Insertion, Heap, Shell, Quick, Merge
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or $\mathrm{O}\left(\mathrm{nlog}_{2} \mathrm{n}\right)$

Sorting

list : | 0 | 1 | 2 | 3 | 4 | . . | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | 5 | 37 | 1 | 61 | 11 | 59 | 15 | 48 |

- How many comparison operations? (Input size n)
- Selection Sort
- Bubble Sort
- Insertion Sort
- Quick Sort
- Merge Sort

Comparison: Sorting Methods

Method							Average		Worst		Extra Space
Selection		$O\left(n^{2}\right)$									
Bubble		$O\left(n^{2}\right)$									
$O\left(n^{2}\right)$	$O(1)$										
Insertion	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	$O(1)$								
Quick	$O\left(n \log _{2} n\right)$	$O\left(n^{2}\right)$	$O(1)$								
Merge	$O\left(n \log _{2} n\right)$	$O\left(n \log _{2} n\right)$	$O(n)$								

- Insertion sort is the best for small n.
- Quick sort is the best in average case.
- Merge sort is the best in worst case, but we need extra space.
- We usually combine Insertion, Quick, and Merge.

Sorting : Performance

- Algorithms by Sedgewick
\checkmark PC: 10^{8} comparisons/sec
\checkmark Super: 10^{12} comparisons/sec
Insertion Sort ($\mathrm{O}\left(\mathrm{n}^{2}\right)$)

	$n=10^{3}$	$n=10^{6}$	$n=10^{9}$
PC	instant	2.8 hrs	317 yrs
Super	instant	1 sec	1.7 wks

Merge Sort ($\mathrm{O}\left(\mathrm{nlog}_{2} \mathrm{n}\right)$)

	$n=10^{3}$	$n=10^{6}$	$n=10^{9}$
PC	instant	$1 \sec$	18 min
Super	instant	instant	instant

Quick Sort ($\mathrm{O}\left(\mathrm{nlog}_{2} \mathrm{n}\right)$)

	$n=10^{3}$	$n=10^{6}$	$n=10^{9}$
PC	instant	0.3 sec	6 min
Super	instant	instant	instant

- Good algorithms are better than supercomputers.
- Good algorithms are better than good ones.

Practical Complexities

- Sequential Search: O(n)
- Binary Search: O($\log _{2} n$)
- External (B-Tree) Search: O($\left.\log _{\mathrm{f}} \mathrm{f}\right), \mathrm{f} \approx 133$
- Selection, Bubble, Insertion Sort : O(n^{2})
- Quick, Heap, Merge Sort: O(n $\cdot \log _{2} n$)
- Euler Cycle: O(n^{2})
- Minimal Spanning Tree: O(n $\cdot \log _{2} n$)
- Shortest Paths: O(n^{2})
- Matrix Addition: $O\left(n^{2}\right)$
- Matrix Multiplication: O(n^{3}) or O($\left.\mathrm{n}^{2 \cdot 81}\right)$
- Satisfiability Problem: O(2n)
- Hamiltonian Cycle: O(n!)
- Graph Coloring : O(nn)
-

Data Structures

- How do we store the following data in memory efficiently?
- Matrix Operations
- Mazing Problem
- Bank Customers Service
- UNIX File Directory
- Baseball Tournament
- Airline Flights Connection
- Given n integers, find an arbitrary number?
- Given n integers, find a maximum number?
- Courses Road Map
-

Data Structures

Data Structure

- How do we store data in a (mostly) memory?
- We need to specify data structure to organize them.
- Choice of different data structures gives us different algorithms.
- Good data structures are essential for efficient algorithms.

Memory

Data Structures

Array/Linked Lis \dagger

Array

- A linear list with (index, value)
- Consecutive memory locations
- Static Allocation : Compile Time
- Reads/writes: O(1)
- Insert/deletes: O(n)

Linked List

- A linear list with pointers(links)
- Non-Consecutive memory locations
- Dynamic Allocation : Run Time
- Reads/writes: O(1)
- Insert/deletes: O(1)

Two Approaches: Arrays vs Linked Lists

- Lists (1 dimension) : Searching, Sorting, . . .
- Matrix Operations
- Binary Trees : Especially, Complete binary tree
- Trees
- Heaps
- Graphs : Roads, Maps, SNS Networks, . . .

Array: Sparse Matrix

- Sparse Matrix : Most elements are 0's; Real values are rare.

Examples: Airline Flights, Web Pages Matrix, . .

col 0	col 1	col 2	col 3	col 4	col 5
row 0					
row 1					
row 2					
row 3					
row 4					
row 5					

0 \& 11 \& 3 \& 0 \& 0 \& 0

0 \& 0 \& 0 \& -6 \& 0 \& 0

0 \& 0 \& 0 \& 0 \& 0 \& 0

91 \& 0 \& 0 \& 0 \& 0 \& 0

0 \& 0 \& 28 \& 0 \& 0 \& 0\end{array}\right]\)

- (Conventional) 2-D array
- A[m, n] (m : \#rows, n : \#columns)
- Memory Usage : t/(m * n) (t:\#non-zeros)
- Very inefficient!

Array : Sparse Matrix

	row	col	value
$[0]$	6	6	8
$[1]$	0	0	15
$[2]$	0	3	22
$[3]$	0	5	-15
$[4]$	1	1	11
$[5]$	1	2	3
$[6]$	2	3	-6
$[7]$	4	0	91
$[8]$	5	2	28

- Compressed 2-D array
- Stores only non-zero values; By raw-major order;
" <row position, column position, non-zero value>
- Memory Usage : $\propto \mathrm{t}$ (independent of matrix size)
- Efficient!

Stack

Stack

- A linear List with top and bottom.
- All insertions and deletions occur at top.
- Push(insert) and Pop(delete)
- Top values grow and shrink.
- All items except top are invisible.
- LIFO (Last-In First-Out)

Implementing Stack

- Array vs Linked Lists
- Create-Stack
- Push
- Pop
- Stack-Full
- Stack-Empty
- Implementation is easy, Very efficient : O(1)
- What about multiple stacks?

Applications: Stack

- Evaluation of Arithmetic Expressions
- $3+2,3+5 * 2,6 / 2-3+4 * 2,\left(2 /(8 \% 4+(3 * 5))^{*}(7-3)\right), \ldots$
- Parsing (Pattern Matching)
- $a^{n} b^{n}, a^{2 n} b n, ~ p a l i n d r o m e s, ~ . ~ . ~$
- Function Calls/Returns
- Call function A, call B, Call C; How return?
- Maze Problem

- Depth First Search

Queue

Queue

- A linear List with front and rear.
- All insertions (enqueue) : rear, All deletions (dequeue) : front
- All items except front and rear are invisible.
- FIFO (First-In First-Out)

enqueue() is the operation for adding an element into Queue.
dequeue() is the operation for removing an element from Queue
QUEUE DATA STRUCTURE

Implementing Queue

- Array vs Linked Lists
- Create-Queue
- Insert
- Delete
- Queue-Full
- Queue-Empty
- For array, implementation is not so easy: O(n)
\rightarrow Use Circular Queue : O(1)
- What about multiple queues?

Applications: Queue

- Key board Data Buffers

■ Job Processing (printer, CPU processor) : FCFS

- Breadth First Search
- Categorizing data into groups
- Waiting times of customers at call center
- Deciding \# of cashiers at super market
- Traffic Analysis

Trees

Tree

- A non-linear list with nodes
- A special node : Root
- Parent : Child = 1 : m relationship
- Leaf node : Node with no child
- Connected
- Acyclic Graph

PARTS OF A TREE DATA STRUCTURE

Binary Tree

- Every node has at most 2 children. (0,1 , or 2)
- Order of children is important.
- Connected
- Acyclic Graph

Types of Binary Trees

- What is height (h) of a binary tree
- n : \#nodes of a binary tree;
- $h \leq n \leq 2^{h}-1$
- Thus, $\log _{2}(\mathrm{n}+1) \leq \mathrm{h} \leq \mathrm{n}$
- $\mathrm{n}=1,000$? $\mathrm{n}=1,000,000$?
- Question : What kind of trees do you prefer?

Implementing Binary Trees

- Arrays
- 1-D array: A[]
- Parent[i] = $\mathrm{i} / 2$, $\operatorname{Lchild}[i]=2 \mathrm{i}$, Rchild $[i]=2 i+1$

- Linked Lists
- Two links for each node
- Lchild, RChild

- How many memories needed?
- How about trees? Array vs. LL?

Applications: Trees

- Hierarchical Information
- Tree Traversals : INORDER, PREORDER, POSTORDER
- Internal Searching : BST, AVL Tree, Red/Black Tree, 2-3 Tree, . .
- External Searching : B Tree, B+ Tree, . .
- Decision Trees : Classifications
- Min/Max Heaps

Graphs

Graph: $G=(V, E)$

- V : a (non-empty) set of vertices
- $\quad \mathrm{G}$: a set of edges $\subseteq(\mathrm{V} \times \mathrm{V})$
- Undirected: $(\mathrm{u}, \mathrm{v})=(\mathrm{v}, \mathrm{u})$
- Directed: $(u, v) \neq(u, v)$

(a) Directed graph

(b) Undirected graph

Implementing Graph

- Adjacency Matrix: O(n²)
- 2-D array : A[n, n] (n : \#vertices)
- $A(i, j)=1$ if vertex i and j are adjacent
= 0 otherwise

(a) Adjacency matrix for nondirected graph

(b) Adjacency matrix for directed graph
- Adjacency List : O(n +e)
- Each node consists vertex and link.
- For each linked list i, it contains vertices adjacent from vertex i

Applications: Graphs

- Depth First Search, Breadth First Search
- Connectivity
- Minimal Spanning Trees
- Articulation Points
- Topological Sorting
- Activity On Vertex(AOV) Networks
- Activity On Edge(AOE) Networks

Exercise: Searching

- Given n numbers, find an arbitrary number X;

Design an efficient data structure; Search, Insert, Delete;

- Array : Unordered
- Array : Ordered (Too much burden!!)
- Binary Search Tree
- AVL Tree
- Quad, Octal, .. Tree
- B-Tree (External Searching)

Binary Search Tree(BST)

BST :

(1) Binary Tree
(2) Every node's key K is
(1) larger than all keys in its left subtree (2) smaller than all keys in its right subtree.

Search/Insert/Delete : Time

Ex: Search(11), Search(18), Insert(18), . .
Height(h) of a BST :

Performance : BST

Average Case :

$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$

Worst Case :

$\mathrm{O}(\mathrm{n})$

Improving Worst Case

- Basic Idea : Balanced + Many Children
- Binary Search Tree
- AVL Tree
- 2-3-4 Tree
- Quad, Octal Tree
- B-Tree (External Searching)

Performance Comparison : Searching

Data Structures	Worst	Average
Unordered Array	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Ordered Array	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$
Binary Search Tree	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$
AVL Tree	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$	$\mathrm{O}\left(\log _{2} n\right)$
2-3-4 Tree	$\mathrm{O}\left(\log _{2 \sim 4} \mathrm{n}\right)$	$\mathrm{O}\left(\log _{2 \sim 4} n\right)$
B Tree (External)	$\mathrm{O}\left(\log _{133} n\right)$	$\mathrm{O}\left(\log _{133} \mathrm{n}\right)$

Exercise: Searching Maximum Value

- Given n numbers, find a maximum number X; Application: Priority Queue
Design an efficient data structure; Search, Insert, Delete;
- Array : Unordered
- Array : Ordered
- Binary Search Tree
- Max Heap

Max Heap

Max Heap :

(1) Complete binary tree
(2) Value of each node is no smaller than its children's values.

- Note : Root of a max heap always has the largest value.

Performance : Max Heap

- Insert : O($\left.\log _{2} n\right)$
- Delete : O($\left.\log _{2} n\right)$

Performance Comparison : Find Max

Data Structures	Insertion	Deletion
Unordered Array	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$
Unordered Linked list	$\mathrm{O}(1)$	$\mathrm{O}(\mathrm{n})$
Ordered Array	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$
Ordered Linked list	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(1)$
Binary Search Tree	$\mathrm{O}(\mathrm{n})$	$\mathrm{O}(\mathrm{n})$
Max Heap	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$	$\mathrm{O}\left(\log _{2} \mathrm{n}\right)$

Constructing Algorithms

- Constructing Algorithm : Two Methods
(1) Iteration
- while-loop, for-loop, repeat-until, . . .
- Conventional Methods
(2) Recursion
- Defined by calling itself.
- Mostly based on divide and conquer
- Simple, concise, high readability
- For every iterative algorithm, there exists an equivalently recursive algorithm; The reverse also is true.

Example: Factorial Number

- Iteration
- Mathematical

Recursion

int Factorial (int n)
if ($\mathrm{n}==0$) return(1); else return (n*Factorial(n-1));

Designing Recursion

- Rules for designing a recursion

1. Base case

- Trivial case
- Usually, $\mathrm{n}=0$ or $\mathrm{n}=1$
- For Termination

2. General case (= Recursive step)

- Break down the problem into sub-problems which are the same, but smaller size.
- Usually, n > 0 or n > 1

3. Combine base case and general case.

Binary Search

- Find an integer X among $\mathrm{n}(>1$) integers; list[n] (All integers are stored by increasing order: Sorted)
- Construct Binary Search algorithms by recursion; (Use 3 variables : mid, left, right)

1. Base Case : Termination Condition
(1) X is found :?
(2) X is not found :?
2. General Case : Break a list into small size
(1) X is in the first half (list[mid] $>X$) : ?
(2) X is in the second half (list [mid] $<X$): ?

Binary Search

```
Bin-Search (list[], X, left, right)
    int mid;
    if (left <= right) {
        mid = (left + right)/2;
    if X < list[mid], Bin-Search(list [], X, left, mid-1);
    else if X == list[mid], return(mid);
    else, Bin-Search(list[], X, mid+1, right); }
```

What is time complexity? $(T(n)=T(n / 2)+1)$

Binary Tree Traversal

- We want visit every node in a binary tree.
- INORDER: Left, Visit, Right (LVR)
- PREORDER : Visit, Left, Right (VLR)
- POSTORDER : Left, Right, Visit (LRV)

Computing X^{N}

```
POWER (int X, int N)
    if (N == 0) return 1;
    else {
        factor = POWER(X,N/2)
        if N%2 == 0 return factor*factor
        else factor*factor*X
            }
```

$X^{N}=\left(X^{N / 2} * X^{N / 2}\right)$ if N : even
$N=8 ; 2^{8}=2^{4 *} 2^{4}, 2^{4}=2^{2 *} 2^{2}, 2^{2}=2^{1 *} 2^{1}$
$X^{N}=\left(X^{N / 2} * X^{N / 2}\right)^{*} X$ if $N:$ odd
$N=9 ; 2^{9}=2^{4 *} 2^{4 *} 2^{1}, 2^{4}=2^{2 *} 2^{2} 2^{2}=2^{1 *} 2^{1}$

Towers of Hanoi

- Base case : $\mathrm{n}=1$
: Move 1 disk from source to dest
- General case : $\mathrm{n}>1$
(1) Move ($n-1$) disks from source to aux: (Use des as aux)
(2) Move ($\mathrm{n}-1$) disks from aux to des: (Use source as aux)


```
towers (int n, source, dest, aux)
    if (n == 1) // base case
    print (Move from to, source, dest);
    else {
        // general case
        towers (n - 1, source, aux, dest);
        towers (1, source, dest, aux);
        towers (n - 1, aux, dest, source); }
```


Recursion is Inefficient . . .

- Which algorithm is more efficient?
\{ result $=$ result *i;
i++;
\}
return (result);\}

Recursive version
int Factorial (int n)
\{
if ($\mathrm{n}==0$) return(1);
else return (n * Factorial $(n-1)$);

Pros/Conse : Recursion

- Pros/Cons
(+) Coding is simple, concise, clear.
(+) Implementation is hidden;
(+) High understandability, readability.
(-) Space Overhead
(-) Time Overhead
- When do we need a recursion?

Do not use a recursion if the answer of the the questions is 'no':

1. Is the algorithm naturally suited to recursion?
2. Is the recursive solution shorter and more understandable?
3. Does the recursive solution run within acceptable time and space?

Algorithm Design Techniques

- Brute Force
- Greedy method
- Divide and Conquer
- Dynamic Programming
- Backtracking

Brute Force

- A straightforward approach to; It tries to find all possible searching spaces.
- Easiest approach and useful for solving small size of a problem.
- Exhaustive search: May be exponential!
- Examples :
- Computing a^{n} (by multiplying $\left.a^{*} a^{*} . . . * a\right)$
- Selection Sort, Bubble Sort
- Shortest Paths
- Sequential search

Greedy Method

- At each solving step, choose the choice what it looks best; The choice must be locally optimal. Can't see the global solution.
- Making the locally optimal choice at each stage with the hope of finding a global optimum. For example, road driving, card playing, . .
- This method always does not give optimal solution, but it works for many problems in a reasonable time.
- Examples :
- Minimal Spanning Tree
- Shortest Paths
- Fractional Knapsack
- Huffman Coding

Spanning Tree

- Spanning tree G^{\prime} is a subgraph of a graph G such that
(1) $\mathrm{V}\left(\mathrm{G}^{\prime}\right)=\mathrm{V}(\mathrm{G})=\mathrm{n}$ (n : \# vertices)
(2) G^{\prime} is connected.
(3) G^{\prime} has ($n-1$) edges.
(4) If we add an edge into G^{\prime}, then a cycle is generated.
(5) If we delete an edge from G^{\prime}, then disconnected.

Graph G
Some Spanning Trees G' of G

Minimal Spanning Tree (MST)

Weighted Graph(G)
MST(G')

- MST is a spanning tree with minimum total weight.
- Greedy Method: (Kruskals's algorithm : O(elogee))
- (1) At each step, choose an edge with smallest weight.
- (2) If the selected edge creates a cycle, then discard it.
- (3) Repeat (1), (2); If sum of total edges are ($n-1$), then done!

Divide and Conquer

- Divide a problem into many smaller sized sub-problems.
- Independently solve each sub-problem and then combine the sub-instance solutions to yield a solution for the original problem.
- The size of the problem is usually reduced by a factor (e.g., half the input size).
- Examples :
- Binary Search
- Quick Sort
- Merge Sort
- Strassen's Matrix Multiplication
- Computing a^{n}

Quick Sort (Top 10 algorithms in $20^{\text {th }}$ Century)

- Given a list of n elements (e.g., integers):
- Pick one element to use as pivot.
- Partition elements into two sub-lists:
> Left sub-lists L : Elements less than or equal to pivot
> Right sub-lists \boldsymbol{R} : Elements greater than pivot
- Recursively sort sub-list \boldsymbol{L} and \boldsymbol{R}
- Combine the results

Quick Sort

Quick Sort : Time Complexity

- Worst Case
- When the sub-lists are completely biased
- Pivot is chosen as a smallest (largest) key for each split
- $T(n)=T(n-1)+c \cdot n$
- O(n^{2})
- Rarely happens
- Average Case
- When the sub-lists are likely balanced
- Pivot is chosen as a random or median of three
- $T(n)=2 \cdot T(n / 2)+c \cdot n$
- $\mathrm{O}\left(\mathrm{n} \cdot \log _{2} \mathrm{n}\right)$
- Fastest known sorting algorithm in practice

Dynamic Programming

- One drawback of "Divide and Conquer" is that the same computations repeatedly for identical sub-problems may arise.
- Dynamic Programming can avoid this drawback by defining the recurrence relation.
- Solve small sized sub-problems and store its result for later.
- The intermediate result can be reused for bigger problem.
- Examples :
- Fibonacci Number
- Warshall Algorithm
- All Pairs Shortest Paths
- 0/1 Knapsack
- Matrix Chain Products

All pairs shortest paths

- Given a directed graph G with n vertices, find the shortest paths between every pairs of vertices
- Brute Force Approach :
- Dynamic Approach : Construct solution through series of matrices using increasing subsets of vertices allowed as intermediate.

Adjacency Matrix

	1	2	3	4
1	0	∞	4	∞
2	1	0	4	3
3	∞	∞	0	∞
4	6	5	1	0

All pairs shortest paths

\bullet We define as $D^{k}[i, j]$ as : length of the shortest path from \mathbf{i} to \mathbf{j} without going through any vertex greater than \mathbf{k}.

- Without going through k : $D^{k-1}[i, j]$
- Going through $k: D^{k-1}[i, k]+D^{k-1}[k, j]$
$D^{k}[i, j]=\min \left\{D^{k-1}[i, j], D^{k-1}[i, k]+D^{k-1}[k, j]\right\}$

- Our goal : $\mathrm{k}=\mathrm{n}$; Compute $\mathrm{D}^{\mathrm{n}}[\mathrm{i}, \mathrm{j}]$ for every pair of vertices i , j where i, j, k in $[1, \ldots n]$

All pairs shortest paths

-Compute $D^{4}[i, j]$ for every pair of vertices i, j;

$D^{0}:$	1	2	3	4
1	0	∞	3	∞
2	2	0	∞	∞
3	∞	7	0	1
4	6	∞	∞	0

$D^{1}:$	1
	2

$D^{3}:$	1	2	3	4
1	0	10	3	4
2	2	0	5	6
3	9	7	0	1
4	6	16	9	0

	1	2	3	4
D^{4}				
1	0	10	3	4
2	2	0	5	6
3	7	7	0	1
4	6	16	9	0

- For example, $D^{1}[2,3]=\min \left\{D^{0}[2,3], D^{0}[2,1]+D^{0}[1,3]\right\}$

$$
=\min \{\infty, 2+3\}=5
$$

All pairs shortest paths

- Floyd Algorithm

$$
\begin{aligned}
& \text { for }(k=1 ; k<=n ; i++) \\
& \qquad \text { for }(i=1 ; i<=n ; i++) \\
& \quad \text { for }(j=1 ; j<=n ; j++) \\
& \quad D^{k}[i, j]=\min \left\{D^{k-1}[i, j], D^{k-1}[i, k]+D^{k-1}[k, j]\right\}
\end{aligned}
$$

- Time Complexity : $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Space Complexity : O(n^{2})
- Note : Works on graphs with negative edges but without negative cycles.

Backtracking

- A sort of brute force approach, but additional condition that only the possible candidate solutions are considered.
- A systematic searching method by pruning searching spaces; This is to avoid unnecessary efforts as early as possible.
- Upon failure, we can go back to the previous choice simply by returning a failure node.
- Backtracking vs. DFS
- Examples :
- Maze Problem
- N-Queens Problem
- Graph Coloring
- Hamiltonian Cycle
- Data Mining : Apriori Algorithm

Backtracking

FIGURE 3-17 Backtracking Example

Backtracking

- In backtracking, we explore each node, as follows:
- To explore node N:

1. If N is a goal node, return "success"
2. If N is a leaf node, return "failure"
3. For each child C of N ,
3.1. Explore C
3.1.1. If C was successful, return "success"
4. Return "failure"

Hard Problems

- So far, many problems can be solved by efficient algorithms.
- In other respect, for many problems, any efficient algorithms have not been found; What's worse, for such problems, we can't even tell whether or not an efficient solution might exist.
- Programmers: Why can not find such efficient algorithms? Theoreticians: Why can not find any reason why these problems should be difficult?
- Consider the following problems;
- Easy : Is there a path from x to y with weight $\leq M$
- Shortest Path: O(n)
- Hard(?) : Is there a path from x to y with weight $\geq M$
- Longest Path: $\mathrm{O}\left(2^{\mathrm{n}}\right)$

Hard Problems

- P Problems
- Can be solved by deterministic algorithms in polynomial time.
- Can be solved with efficient amount of time.
- Searching, Soring, ...
- NP Problems
- Can be solved by non-deterministic algorithms in polynomial time.
- For many problems, only exponential time algorithms are known. (Deterministic polynomial time algorithms are not known (so far).)
- Can not be solved with efficient amount of time.
- Satisfiability, Graph Coloring, . . .
- Relationship between P and $N P$
- Clearly, $\boldsymbol{P} \subseteq \boldsymbol{N} \boldsymbol{P}$ (Any problem in \boldsymbol{P} is in $\boldsymbol{N P}$)
- The biggest open problem in Computer Science;
- Is $\boldsymbol{P} \subset \mathbf{N P}$ or $\boldsymbol{P}=\boldsymbol{N} \boldsymbol{P}$?

Unsolvable (Undecidable) Problems

- Is every problem is solvable?
- The number algorithms is countably infinite.
- The number of problems is un-countably infinite.
- There exist some problems not solvable by any algorithms.
- There exist infinite number of problems not solvable by computers.
- Turing-Undecidable
- Examples
- Post Correspondence Problem(PCP)
- Halting Problem
- Ambiguity Problem
"

Conclusions To Remember

- Lesson 1:

Good algorithms are better than super computers.

- Lesson 2 :

Good algorithms are better than good algorithms.

- Lesson 3 :

Good data structures are essential for good algorithms.

- Lesson 4 :

Try to remember a few well known algorithms.

- Lesson 5 :

Try to learn programming languages and exercise coding.

