Introduction : Data Structures and Algorithms

성균관대학교 컴퓨터공학과 데이터베이스 연구실 김응모

Algorithm

Definition of Algorithm

Algorithm is a <u>step-by-step</u> procedure for <u>solving</u> a problem in a <u>finite</u> amount of time. It consists of :

- Instructions
- Input data
- Output data
- Classes of Algorithms : Computer Science
 - Searching algorithms
 - Sorting algorithms
 - Tree algorithms
 - Graph algorithms
 - Hashing algorithms
 - Parsing algorithms

• • • • • • •

Example : Algorithm

- Problem : Compute GCD
- Algorithm : Euclidean Algorithm
 - Input : Integers ($L \ge S$)
 - Output : GCD of L, S

```
GCD (int L, S)
    int R;
    while (S > 0)
    {
        R = L % S;
        L = S;
        S = R;
    }
    return (L)
```

Example : Algorithm

- Problem : Compute X^N
- Algorithm : Power Algorithm
 - Input : Integers X, N
 - Output : X^N

```
POWER (int X, int N)
if (N == 0) return 1;
else {
   factor = POWER(X, N/2)
   if N%2 == 0 return factor*factor
   else return factor*factor*X
   }
```

Example : Algorithm

- Problem : Sorting integers
- Algorithm : Selection Sort
 - Input : n unsorted integers
 - Output : n sorted integers

```
Selection Sort (int list[n])
for (i = 0; i < n; i++)
{
   1) Examine list[i] to list[n-1]
   2) Find the smallest integer
   3) Let it store list[min];
   4) Swap list[i] and list[min]
}</pre>
```

Performance Analysis

Performance Analysis

- Space Complexity
 - the amount of <u>memory space</u> used by the algorithm
- Time Complexity
 - the amount of computing time used by the algorithm

Typically, the more (less) space, the less (more) time. Thus, sometimes we need to trade off space vs. time.

Space Complexity

Find a total sum of n numbers. Space = ?

- Addition of two n x n matrices. Space = ?
- Representing an n x n sparse matrix. Space = ?

Time Complexity

- Time Complexity Criteria?
 - Theoretical Speed
 - number of operations by performed by the algorithm.
 - Practical Speed
 - the execution time performed by the algorithm.

```
sum = 0;
for (i = 0; i < 1000000; i++)
sum = sum + i;
```

- What is time complexity?
 - Theoretical Speed : 10⁶ (additions)
 - Practical Speed : 10 msec. (Assume: Pentium III, 256M memory)

```
Which criteria is more reasonable?
```

- "Theoretical" speed gives better criteria. Why?

Time Complexity

Linear

for (i=1; i<=n; i++)
{ application code }</pre>

for (i=1; i<=n; i+=2)
{ application code }</pre>

Time = ?

Logarithmic

for (i=1; i<=n; i*= 2)
{ application code }</pre>

Time = ?

for (i=n; i>=1; i/=2)
{ application code }

Quadratic

for (i=1; i<=n; i++) for (j=1; j<=n; j++) { application code }

Time = ?

Dependent quadratic

for (i=1; i<=n; i++) for (j=1; j<=i; j++) { application code }

Time = ?

Linear logarithmic

for (i=1; i<=n; i++) for (j=1; j<=n; j*=2) { application code }

Time Performances : Big Oh(O)

environmental variants. If $f(n) = a_k n^k + ... + a_1 n + a_0$, then $f(n) = O(n^k)$.

Class of Time Complexities

- Polynomial Time
 - O(1) : Constant
 - O(log₂n)
 - O(n)
 - O(n·log₂n)
 - O(n²)
 - O(n³)
 - • • •
 - O(n^k)
- ◆ Exponential Time
 - O(2ⁿ)
 - O(n!)
 - O(nⁿ)

Class of Time Complexities

- Which one is bigger?
 - O(n^k) vs O(2ⁿ)
 - O(n^k) : Easy, Reasonable, Mostly solved within by O(n³)
 - O(2ⁿ) : Hard, Cannot be solved in practice.
- Ordering of complexities
 - $O(1) < O(\log_2 n) < O(n) < O(n\log_2 n) < O(n^2) < O(n^3) < O(2^n) < O(n!)$
- Which are meaning of these comparisons?
 - O(n) vs O(1)
 - O(n) vs O(log₂n)
 - $O(n^2)$ vs $O(n \cdot \log_2 n)$
 - O(n³) vs O(n²)

Growth of Function Values

<u>Seconds</u>	Equivalent
10 ²	1.7 mins
10 ³	17 mins
104	2.8 hrs
10 ⁵	1.1 days
106	1.6 weeks
107	3.8 months
10 ⁸	3.1 years
10 ⁹	3.1 decades

Powers of 2					
210	=	10 ³			
2 ²⁰	=	106			
2 ³⁰	=	10 ⁹			
• •		•			

$$\begin{array}{rl} \underline{\text{Logarithmic}}\\ & \log_2 10^3 = 10\\ & \log_2 10^6 = 20\\ & \log_2 10^9 = 30\\ & & & & & \\ \end{array}$$

		Tin	ne for $f(n)$ in	structions on	a 10 ⁹ instr/sec c	omputer	
n	f(n)=n	$f(n) = \log_2 n$	$f(n)=n^2$	$f(n)=n^3$	$f(n)=n^4$	$f(n)=n^{10}$	$f(n)=2^n$
10	.01µs	.03µs	.1µs	1µs	10µs	10sec	1µs
20	.02µs	.09µs	.4µs	8µs	160µs	2.84hr	1ms
30	.03µs	.15µs	.9µs	27µs	810µs	6.83d	lsec
40	.04µs	.21µs	1.6µs	64µs	2.56ms	121.36d	18.3mi
50	.05µs	.28µs	2.5µs	125µs	6.25ms	3.1yr	13d
100	.10µs	.66µs	10µs	1ms	100ms	3171yr	4*10 ¹³ yr
1,000	1.00µs	9.96µs	1ms	lsec	16.67min	3.17*10 ¹³ yr	32*10 ²⁸³ yr
10,000	10.00µs	130.03µs	100ms	16.67min	115.7d	3.17*10 ²³ yr	
100,000	100.00µs	1.66ms	10sec	11.57d	3171yr	3.17*10 ³³ yr	1
1,000,000	1.00ms	19.92ms	16.67min	31.71yr	3.17*10 ⁷ yr	3.17*10 ⁴³ yr	

Example : Sorting

Classic Problem in Computer Science : Still many researches!

- Sorting is essential for solving many problems efficiently.
- ◆ 25% ~ 50 of total time for solving problem is spent for sorting.
- Performance Criteria : Number of Comparisons
- Selection, Bubble, Insertion, Heap, Shell, Quick, Merge
- $O(n^2)$ or $O(nlog_2n)$

Sorting

	0	1	2	3	4	•••	•		
list :	26	5	37	1	61	11	59	15	48

- How many comparison operations? (Input size n)
 - Selection Sort
 - Bubble Sort
 - Insertion Sort
 - Quick Sort
 - Merge Sort

Comparison: Sorting Methods

<u>Method</u>	<u>Average</u>	<u>Worst</u>	<u>Extra Space</u>
Selection	O(n ²)	O(n ²)	O(1)
Bubble	O(n ²)	O(n ²)	O(1)
Insertion	O(n ²)	O(n ²)	O(1)
Quick	O(nlog ₂ n)	O(n ²)	O(log ₂ n)
Merge	O(nlog ₂ n)	O(nlog ₂ n)	O(n)

- Insertion sort is the best for small n.
- Quick sort is the best in average case.
- Merge sort is the best in worst case, but we need extra space.
- We usually combine Insertion, Quick, and Merge.

Sorting : Performance

- Algorithms by Sedgewick
 - ✓ PC : 10⁸ comparisons/sec
 - ✓ Super : 10¹² comparisons/sec

Insertion Sort (O(n²))

	$n = 10^3$	n = 10 ⁶	$n = 10^9$
PC	instant	2.8hrs	317yrs
Super	instant	1sec	1.7wks

Merge Sort (O(nlog₂n))

	n = 10 ³	n = 10 ⁶	$n = 10^9$
PC	instant	1sec	18min
Super	instant	instant	instant

Quick Sort (O(nlog₂n))

	n = 10 ³	n = 10 ⁶	$n = 10^9$
PC	instant	0.3sec	6min
Super	instant	instant	instant

- Good algorithms are better than supercomputers.
- Good algorithms are better than good ones.

Practical Complexities

- Sequential Search : O(n)
- Binary Search : O(log₂n)
- External (B-Tree) Search : O(log_fn), $f \approx 133$
- Selection, Bubble, Insertion Sort : O(n²)
- Quick, Heap, Merge Sort : $O(n \cdot \log_2 n)$
- Euler Cycle : O(n²)
- Minimal Spanning Tree : O(n·log₂n)
- Shortest Paths : O(n²)
- Matrix Addition : O(n²)
- Matrix Multiplication : $O(n^3)$ or $O(n^{2 \cdot 81})$
- Satisfiability Problem : O(2ⁿ)
- Hamiltonian Cycle : O(n!)
- Graph Coloring : O(nⁿ)
- • • • • •

Data Structures

- How do we store the following data in memory efficiently?
 - Matrix Operations
 - Mazing Problem
 - Bank Customers Service
 - UNIX File Directory
 - Baseball Tournament
 - Airline Flights Connection
 - Given n integers, find an arbitrary number?
 - Given n integers, find a maximum number?
 - Courses Road Map
 - • • • •

Data Structures

 \blacklozenge

Data Structure

- How do we store data in a (mostly) memory?
- We need to specify data structure to organize them.
- Choice of different data structures gives us different algorithms.
- Good data structures are essential for efficient algorithms.

Array/Linked List

Array

- A linear list with (index, value)
- Consecutive memory locations
- Static Allocation : Compile Time
- Reads/writes : O(1)
- Insert/deletes : O(n)

Linked List

- A linear list with pointers(links)
- Non-Consecutive memory locations
- Dynamic Allocation : Run Time
- Reads/writes : O(1)
- Insert/deletes : O(1)

Two Approaches : Arrays vs Linked Lists

• Lists (1 dimension) : Searching, Sorting, . . .

• Matrix Operations

• Binary Trees : Especially, Complete binary tree

Trees

Heaps

• Graphs : Roads, Maps, SNS Networks, . . .

Array : Sparse Matrix

Sparse Matrix : Most elements are 0's; Real values are rare.
 Examples : Airline Flights, Web Pages Matrix, . .

- (Conventional) 2-D array
 - A[m, n] (m : #rows, n : #columns)
 - Memory Usage : t / (m * n) (t : #non-zeros)
 - Very inefficient!

Array : Sparse Matrix

	row	col	value	
[0]	6	6	8	
[1]	0	0	15	
[2]	0	3	22	
[3]	0	5	-15	
[4]	1	1	11	
[5]	1	2	3	
[6]	2	3	-6	
[7]	4	0	91	
[8]	5	2	28	

Compressed 2-D array

- Stores only non-zero values; By raw-major order;
- <row position, column position, non-zero value>
- Memory Usage : ∝t (independent of matrix size)
- Efficient!

Stack

Stack

- A linear List with top and bottom.
- All insertions and deletions occur at top.
- Push(insert) and Pop(delete)
- Top values grow and shrink.
- All items except top are invisible.
- LIFO (Last-In First-Out)

Implementing Stack

Array vs Linked Lists

- Create-Stack .
- Push .
- Рор •
- Stack-Full •
- Stack-Empty

Implementation is easy, Very efficient : O(1) \bullet

What about multiple stacks?

Applications : Stack

- Evaluation of Arithmetic Expressions
 - 3+2, 3+5*2, 6/2-3+4*2, (2/(8%4+(3*5))*(7-3)), . . .
- Parsing (Pattern Matching)
 - aⁿbⁿ, a²ⁿbⁿ, palindromes, . .
- Function Calls/Returns
 - Call function A, call B, Call C; How return?
- Maze Problem

Depth First Search

Queue

<u>Queue</u>

- A linear List with front and rear.
- All insertions (enqueue) : rear,
 All deletions (dequeue) : front
- All items except front and rear are invisible.
- FIFO (First-In First-Out)

enqueue() is the operation for adding an element into Queue.
dequeue() is the operation for removing an element from Queue .

QUEUE DATA STRUCTURE

Implementing Queue

- Array vs Linked Lists
 - Create-Queue
 - Insert
 - Delete
 - Queue-Full
 - Queue-Empty
- For array, implementation is not so easy : O(n)
 - \rightarrow Use Circular Queue : O(1)
- What about multiple queues?

Applications : Queue

- Key board Data Buffers
- Job Processing (printer, CPU processor) : FCFS
- Breadth First Search
- Categorizing data into groups
- Waiting times of customers at call center
- Deciding # of cashiers at super market
- Traffic Analysis

Trees

<u>Tree</u>

- A non-linear list with nodes
- A special node : Root
- Parent : Child = 1 : m relationship
- Leaf node : Node with no child
- Connected
- Acyclic Graph

PARTS OF A TREE DATA STRUCTURE

(c)www.teach-ict.com

Binary Tree

- Every node has at most 2 children.
 (0, 1, or 2)
- Order of children is important.
- Connected
- Acyclic Graph

Types of Binary Trees

- What is height (h) of a binary tree
 - n : #nodes of a binary tree;
 - $h \le n \le 2^h 1$
 - Thus, $log_2(n+1) \le h \le n$
 - n =1,000? n =1,000,000?

• Question : What kind of trees do you prefer?

Implementing Binary Trees

Arrays

- **1-D** array : A[]
- Parent[i] = i/2, Lchild[i] = 2i, Rchild[i] = 2i+1

Linked Lists

- Two links for each node
- Lchild, RChild

• How many memories needed?

• How about trees? Array vs. LL?

Applications : Trees

Hierarchical Information

Tree Traversals : INORDER, PREORDER, POSTORDER

◆ Internal Searching : BST, AVL Tree, Red/Black Tree, 2-3 Tree, . .

• External Searching : B Tree, B+ Tree, . .

Decision Trees : Classifications

Min/Max Heaps

Graphs

\underline{Graph} : G = (V, E)

- V : a (non-empty) set of vertices
- G : a set of edges \subseteq (V × V)
- Undirected : (u, v) = (v, u)
- Directed : $(u, v) \neq (u, v)$

Implementing Graph

- Adjacency Matrix : O(n²)
 - **2-D** array : A[n, n] (n : #vertices)
 - A(i, j) = 1 if vertex i and j are adjacent
 - = 0 otherwise

(a) Adjacency matrix for nondirected graph

(b) Adjacency matrix for directed graph

- Adjacency List : O(n +e)
 - Each node consists vertex and link.
 - For each linked list i, it contains vertices adjacent from vertex i

Applications : Graphs

Depth First Search, Breadth First Search

Connectivity

- Minimal Spanning Trees
- Articulation Points
- Topological Sorting
- Activity On Vertex(AOV) Networks
- Activity On Edge(AOE) Networks

Exercise : Searching

- Given n numbers, find an arbitrary number X;
 Design an efficient data structure; Search, Insert, Delete;
 - Array : Unordered
 - Array : Ordered (Too much burden!!)
 - Binary Search Tree
 - AVL Tree
 - Quad, Octal, . . Tree
 - B-Tree (External Searching)

Binary Search Tree(BST)

<u>BST</u> : **Binary Tree** (1)

Every node's key K is (2)

larger than all keys in its left (1)subtree 2 smaller than all keys in its right subtree.

Search/Insert/Delete : Time

Ex: Search(11), Search(18), Insert(18), . .

Height(h) of a BST :

Performance : BST

. .

Average Case :

 $O(log_2n)$

Worst Case :

O(n)

Improving Worst Case

- Basic Idea : Balanced + Many Children
 - Binary Search Tree
 - AVL Tree
 - 2-3-4 Tree
 - Quad, Octal Tree
 - B-Tree (External Searching)

Performance Comparison : Searching

Data Structures	Worst	Average	
Unordered Array	O(n)	O(n)	
Ordered Array	O(log ₂ n)	O(log ₂ n)	
Binary Search Tree	O(n)	O(log ₂ n)	
AVL Tree	O(log ₂ n)	O(log ₂ n)	
2-3-4 Tree	O(log _{2~4} n)	O(log _{2~4} n)	
B Tree (External)	O(log ₁₃₃ n)	O(log ₁₃₃ n)	

Exercise : Searching Maximum Value

Given n numbers, find a maximum number X;
 Application : Priority Queue

Design an efficient data structure; Search, Insert, Delete;

- Array : Unordered
- Array : Ordered
- Binary Search Tree
- Max Heap

• Note : Root of a max heap always has the largest value.

- Insert : O(log₂n)
- **Delete** : O(log₂n)

Performance Comparison : Find Max

Data Structures	Insertion	Deletion	
Unordered Array	O(1)	O(n)	
Unordered Linked list	O(1)	O(n)	
Ordered Array	O(n)	O(1)	
Ordered Linked list	O(n)	O(1)	
Binary Search Tree	O(n)	O(n)	
Max Heap	O(log ₂ n) O(log		

Constructing Algorithms

- Constructing Algorithm : Two Methods
 (1) Iteration
 - while-loop, for-loop, repeat-until, . . .
 - Conventional Methods

(2) Recursion

- Defined by calling itself.
- Mostly based on divide and conquer
- Simple, concise, high readability

 For every iterative algorithm, there exists an equivalently recursive algorithm; The reverse also is true.

Example : Factorial Number

Recursion

int Factorial (int n) if (n==0) return(1); else return (n*Factorial(n-1));

Designing Recursion

- Rules for designing a recursion
 - 1. Base case
 - Trivial case
 - Usually, n = 0 or n = 1
 - For Termination
 - 2. General case (= Recursive step)
 - Break down the problem into sub-problems which are the same, but smaller size.
 - Usually, n > 0 or n > 1
 - 3. Combine base case and general case.

Binary Search

- Find an integer X among n (> 1) integers; list[n]
 (All integers are stored by increasing order: Sorted)
- Construct Binary Search algorithms by recursion;
 (Use 3 variables : mid, left, right)
 - Base Case : Termination Condition

 X is found : <u>?</u>
 X is not found : <u>?</u>
 - 2. General Case : Break a list into small size
 (1) X is in the first half (list[mid] > X) : ?
 (2) X is in the second half (list [mid] < X) : ?

Binary Search

```
Bin-Search (list[], X, left, right)
int mid;
if (left <= right) {
  mid = (left + right)/2;
  if X < list[mid], Bin-Search(list [], X, left, mid-1);
  else if X == list[mid], return(mid);
  else, Bin-Search(list[], X, mid+1, right); }</pre>
```

• What is time complexity? (T(n) = T(n/2) + 1)

Binary Tree Traversal

We want visit every node in a binary tree.

- INORDER : Left, Visit, Right (LVR)
- PREORDER : Visit, Left, Right (VLR)
- POSTORDER : Left, Right, Visit (LRV)

INORDER(p) if (p != NULL) INORDER(p->Lchild) print(ptr->data) INORDER(p->Rchild) POSTORDER(p) if (p != NULL) PREORDER(p->Lchild) PREORDER(p->Rchild) print(ptr->data)

Computing X^N

```
POWER (int X, int N)
if (N == 0) return 1;
else {
   factor = POWER(X, N/2)
   if N%2 == 0 return factor*factor
   else factor*factor*X
   }
```

 $X^{N} = (X^{N/2} * X^{N/2}) \text{ if } N : \text{even} \qquad N = 8; \ 2^{8} = 2^{4} * 2^{4}, \ 2^{4} = 2^{2} * 2^{2}, \ 2^{2} = 2^{1} * 2^{1}$ $X^{N} = (X^{N/2} * X^{N/2}) * X \text{ if } N : \text{odd} \qquad N = 9; \ 2^{9} = 2^{4} * 2^{4} * 2^{1}, \ 2^{4} = 2^{2} * 2^{2} \ 2^{2} = 2^{1} * 2^{1}$

Towers of Hanoi

Base case : n = 1

: Move 1 disk from source to dest

 General case : n > 1
 (1) Move (n - 1) disks from source to aux : (Use des as aux)

(2) Move (n - 1) disks from aux to des : (Use source as aux)


```
towers (int n, source, dest, aux)
if (n == 1) // base case
    print (Move from to, source, dest);
else { // general case
    towers (n - 1, source, aux, dest);
    towers (1, source, dest, aux);
    towers (n - 1, aux, dest, source); }
```

Recursion is Inefficient . . .

• Which algorithm is more efficient?

```
Iterative version

int factorial (int n)

{ i = 1;

result = 1;

while (i <= n)

{ result = result * i;

i++;

}

return (result);}
```

```
Recursive version

int Factorial (int n)

{

if ( n == 0 ) return(1);

else return (n * Factorial (n - 1));

}
```

Pros/Conse : Recursion

Pros/Cons

(+) Coding is simple, concise, clear.

(+) Implementation is hidden;

(+) High understandability, readability.

(-) Space Overhead

(-) Time Overhead

• When do we need a recursion?

Do <u>not</u> use a recursion if the answer of the the questions is 'no':

1. Is the algorithm naturally suited to recursion?

2. Is the recursive solution shorter and more understandable?

3. Does the recursive solution run within acceptable time and space?

Algorithm Design Techniques

Brute Force

- Greedy method
- Divide and Conquer
- Dynamic Programming
- ♦ Backtracking

Brute Force

 A straightforward approach to; It tries to find all possible searching spaces.

• Easiest approach and useful for solving small size of a problem.

- Exhaustive search: May be exponential!
- Examples :
 - Computing aⁿ (by multiplying a*a*...*a)
 - Selection Sort, Bubble Sort
 - Shortest Paths
 - Sequential search

Greedy Method

- At each solving step, choose the choice what it looks best; The choice must be locally optimal. Can't see the global solution.
- Making the locally optimal choice at each stage with the hope of finding a global optimum. For example, road driving, card playing, . .
- This method always does not give optimal solution, but it works for many problems in a reasonable time.
- Examples :
 - Minimal Spanning Tree
 - Shortest Paths
 - Fractional Knapsack
 - Huffman Coding

Spanning Tree

• **Spanning tree** G' is a subgraph of a graph G such that

(1) V(G') = V(G) = n (n : # vertices)

- (2) G' is connected.
- (3) G' has (n 1) edges.
- (4) If we add an edge into G', then a cycle is generated.
- (5) If we delete an edge from G', then disconnected.

Minimal Spanning Tree (MST)

MST is a spanning tree with minimum total weight.

• Greedy Method : (Kruskals's algorithm : O(elog₂e))

- (1) At each step, choose an edge with smallest weight.
- (2) If the selected edge creates a cycle, then discard it.
- (3) Repeat (1), (2); If sum of total edges are (n − 1), then done!

Divide and Conquer

- **Divide** a problem into many **smaller** sized sub-problems.
- Independently solve each sub-problem and then combine the sub-instance solutions to yield a solution for the original problem.
- The size of the problem is usually reduced by a factor (e.g., half the input size).
- Examples :
 - Binary Search
 - Quick Sort
 - Merge Sort
 - Strassen's Matrix Multiplication
 - Computing aⁿ

Quick Sort (Top 10 algorithms in 20th Century)

- Given a list of n elements (e.g., integers):
 - Pick one element to use as *pivot*.
 - Partition elements into two sub-lists:
 - > Left sub-lists L : Elements less than or equal to pivot
 - > Right sub-lists **R** : Elements greater than pivot
 - Recursively sort sub-list *L* and *R*
 - Combine the results

keys < pivot		pivot	keys ≥ pivot			
After second partitioning						9
< pivot	t pivot	≥ pivo	t			
After third	d partiti	onina				
Sort	ed —					
		tioning				
After four	ui parti	uoning				
•	Sort		►			
◀ After fifth	Sort	ted	•			
◄ After fifth	Sort	ted	>			
After fifth	Sort	ted		< pivot	pivot	≥ pivot
-	Sort	ed		< pivot	pivot	≥ pivot
-	Sort	ed		< pivot	pivot	≥ pivot
-	Sort	ed		< pivot	pivot	≥ pivot
After fifth	Sort	ed	rted —	< pivot	pivot	≥ pivot
	Sorte partitio Sorte h partiti	ed oning oning oning So		< pivot	pivot	≥ pivot

Assume : Pivot is chosen as median of three.

Quick Sort : Time Complexity

Worst Case

- When the sub-lists are completely biased
- Pivot is chosen as a smallest (largest) key for each split
- $T(n) = T(n 1) + c \cdot n$
- O(n²)
- Rarely happens

Average Case

- When the sub-lists are likely balanced
- Pivot is chosen as a random or median of three
- $T(n) = 2 \cdot T(n/2) + c \cdot n$
- $O(n \cdot \log_2 n)$
- Fastest known sorting algorithm in practice

Dynamic Programming

- One drawback of "Divide and Conquer" is that the same computations repeatedly for identical sub-problems may arise.
- Dynamic Programming can avoid this drawback by defining the recurrence relation.
- Solve small sized sub-problems and store its result for later.
- The intermediate result can be reused for bigger problem.

• Examples :

- Fibonacci Number
- Warshall Algorithm
- All Pairs Shortest Paths
- 0/1 Knapsack
- Matrix Chain Products

- Given a directed graph G with n vertices, find the shortest paths between every pairs of vertices
- Brute Force Approach :
- Dynamic Approach : Construct solution through series of matrices using increasing subsets of vertices allowed as intermediate.

Adjacency Matrix

	1	2	3	4
1	0	∞	4	∞
2	1	0	4	3
3	∞	∞	0	∞
4	6	5	1	0

We define as D^k[i,j] as : length of the shortest path from i to j without going through any vertex greater than k.

- Without going through k : D^{k-1}[i,j]
- Going through $k : D^{k-1}[i,k] + D^{k-1}[k,j]$

 $D^{k}[i,j] = \min \{D^{k-1}[i,j], D^{k-1}[i,k] + D^{k-1}[k,j]\}$

Our goal : k = n; Compute Dⁿ[i, j] for every pair of vertices i, j where i, j, k in [1, . . . n]

Compute D⁴[i, j] for every pair of vertices i, j;

◆ For example, $D^{1}[2, 3] = \min \{D^{0}[2, 3], D^{0}[2, 1] + D^{0}[1, 3]\}$ = min {∞, 2+3} = 5

Floyd Algorithm

for (k=1; k<=n; i++) for (i=1; i<=n; i++) for (j=1; j<=n; j++) $D^{k}[i, j] = min \{D^{k-1}[i, j], D^{k-1}[i, k] + D^{k-1}[k, j]\}$

• Time Complexity : O(n³)

- Space Complexity : O(n²)
- Note : Works on graphs with negative edges but without negative cycles.

Backtracking

- A sort of brute force approach, but additional condition that only the possible candidate solutions are considered.
- A systematic searching method by pruning searching spaces; This is to avoid unnecessary efforts as early as possible.
- Upon failure, we can go back to the previous choice simply by returning a failure node.
- Backtracking vs. DFS
- Examples :
 - Maze Problem
 - N-Queens Problem
 - Graph Coloring
 - Hamiltonian Cycle
 - Data Mining : Apriori Algorithm

Backtracking

FIGURE 3-17 Backtracking Example

At 4	At 6	At 1 st end	At 2 nd end	At 3 rd end	At goal
B12 3 2 1	B8 B9 5 4 B12 3 2 1	end 7 6 88 89 5 4 B12 3 2 1	end 8 B9 5 4 B12 3 2 1	end 11 10 9 5 4 B12 3 2 1	goal 16 15 14 B17 13 12 3 2 1

Backtracking

- In backtracking, we explore each node, as follows:
- To explore node N:
 - 1. If N is a goal node, return "success"
 - 2. If N is a leaf node, return "failure"
 - 3. For each child C of N,
 - 3.1. Explore C
 - 3.1.1. If C was successful, return "success"
 - 4. Return "failure"

Hard Problems

- So far, many problems can be solved by efficient algorithms.
- In other respect, for many problems, any efficient algorithms have not been found; What's worse, for such problems, we can't even tell whether or not an efficient solution might exist.
- Programmers : Why can not find such efficient algorithms? Theoreticians : Why can not find any reason why these problems should be difficult?
- Consider the following problems;
 - Easy : Is there a path from x to y with weight \leq M
 - Shortest Path : O(n)
 - Hard(?) : Is there a path from x to y with weight \geq M
 - Longest Path : O(2ⁿ)

Hard Problems

- Problems
 - Can be solved by deterministic algorithms in polynomial time.
 - Can be solved with efficient amount of time.
 - Searching, Soring, . . .
- NP Problems
 - Can be solved by non-deterministic algorithms in polynomial time.
 - For many problems, only exponential time algorithms are known.
 (Deterministic polynomial time algorithms are not known (so far).)
 - Can not be solved with efficient amount of time.
 - Satisfiability, Graph Coloring, . . .
- Relationship between P and NP
 - Clearly, $P \subseteq NP$ (Any problem in **P** is in **NP**)
 - The biggest open problem in Computer Science;
 - Is *P C NP* or *P* = *NP*?

Unsolvable (Undecidable) Problems

- Is every problem is solvable?
 - The number algorithms is countably infinite.
 - The number of problems is un-countably infinite.
 - There exist some problems not solvable by any algorithms.
 - There exist infinite number of problems not solvable by computers.
 - Turing-Undecidable

Examples

- Post Correspondence Problem(PCP)
- Halting Problem
- Ambiguity Problem
- • • • •

Conclusions To Remember

Lesson 1 :

Good algorithms are better than super computers.

Lesson 2 :

Good algorithms are better than good algorithms.

Lesson 3 :

Good data structures are essential for good algorithms.

Lesson 4 :

Try to remember a few well known algorithms.

Lesson 5 :

Try to learn programming languages and exercise coding.