SQP method for equality constrained optimization

Jae Hwa LEE

AORC Sungkyunkwan University

Jan 31 2018 The 1st AORC Center-wide Monthly Seminar

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Equality Constrained Optimization (ECO)

minimize
$$f(x)$$

subject to $c_i(x) = 0$, $i = 1, ..., m_e$

- f(x), $c_i(x)$ are smooth functions.
- Lagrangian function

$$L(x,\lambda) = f(x) + \lambda^{T} c(x),$$

where $\lambda = (\lambda_{1}, \dots, \lambda_{m_{e}})^{T}$, $c(x) = (c_{1}(x), \dots, c_{m_{e}}(x))^{T}$

-

Notations

•
$$g(x) = \nabla f(x), A(x) = \nabla c(x) = (\nabla c_1(x), \dots, \nabla c_{m_e}(x))$$

•
$$f_k = f(x_k)$$
, $c_k = c(x_k)$, $g_k = g(x_k) = \nabla f(x_k)$, and so on.

Hessian of Lagrangian

$$abla_x^2 L(x,\lambda) = W(x,\lambda) =
abla^2 f(x) + \sum_{i=1}^{m_e} \lambda_i \nabla^2 c_i(x)$$

Exact penalty function

$$\phi(x,\sigma) = f(x) + \sigma ||c(x)||,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

where $\sigma > 0$ is a penalty parameter.

Lagrange-Newton method

$$\nabla_{x}L(x,\lambda) = g(x) + A(x)\lambda = 0$$

$$c(x) = 0$$

$$\downarrow \quad \text{Newton's method}$$

$$\begin{bmatrix} W(x_{k},\lambda_{k}) & A_{k} \\ A_{k}^{T} & 0 \end{bmatrix} \begin{bmatrix} d \\ \Delta\lambda \end{bmatrix} = -\begin{bmatrix} g_{k} + A_{k}\lambda_{k} \\ c_{k} \end{bmatrix}$$

$$\begin{pmatrix} W(x_{k},\lambda_{k}) & A_{k} \\ A_{k}^{T} & 0 \end{bmatrix} \begin{bmatrix} d \\ \lambda^{+} \end{bmatrix} = -\begin{bmatrix} g_{k} \\ c_{k} \end{bmatrix}$$

Sequential Quadratic Programming (SQP) method

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

SQP Algorithm

Step 1 Given
$$x_0$$
, B_0 , $\epsilon > 0$, σ_0 , $k := 0$.

► Step 2 If $||g_k + A_k \lambda_k|| + ||c_k|| \le \epsilon$, then stop. Solve the subproblem (1)

minimize
$$g_k^T d + \frac{1}{2} d^T B_k d$$

subject to $c_k + A_k^T d = 0$

to obtain d_k .

• Step 3 Carry out line search to obtain $\alpha_k > 0$, set

$$x_{k+1} = x_k + \alpha_k d_k.$$

Step 4 Generate B_{k+1} , σ_{k+1} , k =: k + 1, go to Step 2.

Quasi-Newton update

$$\nabla_x^2 L(x_{k+1},\lambda_{k+1})(x_{k+1}-x_k) \approx \nabla_x L(x_{k+1},\lambda_{k+1}) - \nabla_x L(x_k,\lambda_k)$$

Approximate Hessian

$$B_{k+1} \approx \nabla_x^2 L(x_{k+1}, \lambda_{k+1})$$

Quasi-Newton equation

$$B_{k+1}s_k=y_k,$$

where $s_k = x_{k+1} - x_k$, $y_k = \nabla_x L(x_{k+1}, \lambda_{k+1}) - \nabla_x L(x_k, \lambda_k)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

In general, symmetric and positive definite B_k is required in line search type method.

BFGS and L-BFGS update

BFGS update

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{y_k y_k^T}{s_k^T y_k}$$

Limited-memory BFGS update

$$B_k = \sigma_k I + \begin{bmatrix} S_k & Y_k \end{bmatrix} D_k \begin{bmatrix} S_k^T \\ Y_k^T \end{bmatrix}$$

where $\sigma > 0$, D_k is a $2m \times 2m$ matrix and

$$[S_k \quad Y_k] = [s_{k-m}, \ldots, s_{k-1}, y_{k-m}, \ldots, y_{k-1}] \in \mathbb{R}^{n \times 2m},$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Damped BFGS update

• In ECO case, $s_k^T y_k > 0$ may not hold.

Damped BFGS updating for SQP

$$B_{k+1} = B_k - \frac{B_k s_k s_k^T B_k}{s_k^T B_k s_k} + \frac{\bar{y}_k \bar{y}_k^T}{s_k^T \bar{y}_k}$$

where $\bar{y}_k = \theta_k y_k + (1 - \theta_k) B_k s_k$,

$$\theta_k = \begin{cases} 1, & \text{if } s_k^T y_k \ge 0.2 s_k^T B_k s_k \\ (0.8 s_k^T B_k s_k) / (s_k^T B_k s_k - s_k^T y_k), & \text{otherwise.} \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Damped L-BFGS update

Damped limited-memory BFGS method (2)

$$B_k = \sigma_k I + \begin{bmatrix} S_k & \bar{Y}_k \end{bmatrix} D_k \begin{bmatrix} S_k^T \\ \bar{Y}_k^T \end{bmatrix}$$

where D_k is a $2m \times 2m$ matrix and

$$\begin{split} [S_k \quad \bar{Y}_k] &= [s_{k-m}, \dots, s_{k-1}, \bar{y}_{k-m}, \dots, \bar{y}_{k-1}] \in \mathbb{R}^{n \times 2m}, \\ s_k &= x_{k+1} - x_k, \quad \bar{y}_k = \theta_k y_k + (1 - \theta_k) B_k s_k \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Global convergence

 This proof is using the idea of Powell's paper (Variable metric methods for constrained optimization 1983).

Theorem

Suppose that iterates are generated by the algorithm. Suppose that the sequences $\{x_k : k = 1, 2, 3, ...\}$ and $\{x_k + d_k : k = 1, 2, 3, ...\}$ are contained in a closed, bounded, convex region of \mathbb{R}^n in which f and c_i have continuous first derivatives. Suppose that the matrices $\{B_k : k = 1, 2, 3, ...\}$ and multipliers are bounded and that σ satisfies

$$\sigma \geq \|\lambda_{k+1}\|_{\infty} + \bar{\sigma}, \quad \forall k,$$

where $\bar{\sigma} > 0$ is a constant. Then all limit points of the sequence $\{x_k : k = 1, 2, 3, ...\}$ are KKT points of the original problem (1).

Applications

- Y. Wang, S. Ma and Q. Ma. Full Space and Subspace Methods for Large Scale Image Restoration, in: Y. F. Wang, A. G. Yagola and C. C. Yang eds., Optimization and Regularization for Computational Inverse Problems and Applications, Beijing/Berlin: Higher Education Press and Springer, 2010.
- Y. Wang and S. Ma, A fast subspace method for image deblurring, Applied Mathematics and Computation, 215 (2009), pp. 2359-2377.
- Liu et al, Limited Memory Block Krylov Subspace Optimization for Computing Dominant Singular Value Decompositions, SIAM Journal on Scientific Computing, 35 (2013), pp.A1641A1668.

References

- R. H. Byrd, R. B. Schnabel and G. A. Shultz, Approximate solution of the trust region problem by minimization over two-dimensional subspaces, *Mathematical Programming*, 40 (1988), pp. 247-263.
- J. E. Dennis, Jr. and H. H. W. Mei, Two new unconstrained optimization algorithms which use function and gradient values, *Journal of Optimization Theory and Applications*, 28 (1979), pp. 453-482.
- G.N.Grapiglia et al, A subspace version of the Powell-Yuan trust region algorithm for equality constrained optimization, *Journal of the OR Society of China*, 1(2013), pp.425-451.
- D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization, *Mathematical Programming*, 45 (1989), pp. 503-528.

- M. J. D. Powell, A new algorithm for unconstrained optimization, in: J. B. Rosen, O. L. Mangasarian and K. Ritter, eds., *Nonlinear Programming*, Academic Press, New York, 1970, pp. 31-65.
- G. A. Shultz, R. B. Schnabel and R. H. Byrd, A family of trust-region-based algorithms for unconstrained minimization with strong global convergence properties, *SIAM Journal on Numerical Analysis*, 22 (1985), pp. 47-67.
- T. Steihaug, The conjugate gradient method and trust regions in large scale optimization, SIAM Journal on Numerical Analysis, 20 (1983), pp. 626-637.
- ▶ J. Stoer and Y. Yuan, A subspace study on conjugate gradient algorithms, *ZAMM Z. angew. Math. Mech.*, 75 (1995), pp. 69-77.

- Z. -H. Wang, Z. -W. Wen and Y. Yuan, A subspace trust region method for large scale unconstrained optimization, in: Y. Yuan, ed., *Numerical Linear Algebra and Optimization*, Science Press, Beijing/New York, 2004, pp. 265-274.
- Z. -H. Wang and Y. Yuan, A subspace implementation of quasi-Newton trust region methods for unconstrained optimization, *Numerische Mathematik*, 104 (2006), pp. 241-269.
- Y. Yuan, On the truncated conjugate gradient method, Mathematical Programming Series A, 87 (2000), pp. 561-573.
- Y. Yuan, Subspace techniques for nonlinear optimization, in: R. Jeltsch, T. Li and I. H. Sloan, eds., Some Topics in Industrial and Applied Mathematics (Series in Contemporary Applied Mathematics CAM 8), Higher Education Press, Beijing, 2007, pp. 206-218.

 Y. Yuan, Subspace methods for large scale nonlinear equations and nonlinear least squares, *Optimization and Engineering*, 10 (2009), pp. 207-218.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで