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Equality Constrained Optimization (ECO)

minimize f (x)

subject to ci (x) = 0, i = 1, ...,me

I f (x), ci (x) are smooth functions.

I Lagrangian function

L(x , λ) = f (x) + λT c(x),

where λ = (λ1, . . . , λme )T , c(x) = (c1(x), . . . , cme (x))T



Notations

I g(x) = ∇f (x), A(x) = ∇c(x) = (∇c1(x), . . . ,∇cme (x))

I fk = f (xk), ck = c(xk), gk = g(xk) = ∇f (xk), and so on.

I Hessian of Lagrangian

∇2
xL(x , λ) = W (x , λ) = ∇2f (x) +

me∑
i=1

λi∇2ci (x)

I Exact penalty function

φ(x , σ) = f (x) + σ||c(x)||,

where σ > 0 is a penalty parameter.



Lagrange-Newton method

∇xL(x , λ) = g(x) + A(x)λ = 0

c(x) = 0

⇓ Newton’s method[
W (xk , λk)
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Sequential Quadratic Programming (SQP) method

Bk ≈W (xk , λk) = ∇2f (xk) +
me∑
i=1

λ
(k)
i ∇

2ci (xk)

⇓ SQP method[
Bk
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dTBkd

subject to ck + AT
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SQP Algorithm

I Step 1 Given x0, B0, ε > 0, σ0, k := 0.

I Step 2 If ||gk + Akλk ||+ ||ck || ≤ ε, then stop.

Solve the subproblem (1)

minimize gT
k d +

1

2
dTBkd

subject to ck + AT
k d = 0

to obtain dk .

I Step 3 Carry out line search to obtain αk > 0, set

xk+1 = xk + αkdk .

I Step 4 Generate Bk+1, σk+1, k =: k + 1, go to Step 2.



Quasi-Newton update

∇2
xL(xk+1, λk+1)(xk+1 − xk) ≈ ∇xL(xk+1, λk+1)−∇xL(xk , λk)

I Approximate Hessian

Bk+1 ≈ ∇2
xL(xk+1, λk+1)

I Quasi-Newton equation

Bk+1sk = yk ,

where sk = xk+1 − xk , yk = ∇xL(xk+1, λk+1)−∇xL(xk , λk)

I In general, symmetric and positive definite Bk is required in
line search type method.



BFGS and L-BFGS update

I BFGS update

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

yky
T
k

sTk yk

I Limited-memory BFGS update

Bk = σk I + [Sk Yk ]Dk

[
ST
k

Y T
k

]

where σ > 0, Dk is a 2m × 2m matrix and

[Sk Yk ] = [sk−m, . . . , sk−1, yk−m, . . . , yk−1] ∈ Rn×2m,



Damped BFGS update

I In ECO case, sTk yk > 0 may not hold.

I Damped BFGS updating for SQP

Bk+1 = Bk −
Bksks

T
k Bk

sTk Bksk
+

ȳk ȳ
T
k

sTk ȳk

where ȳk = θkyk + (1− θk)Bksk ,

θk =

{
1, if sTk yk ≥ 0.2sTk Bksk
(0.8sTk Bksk)/(sTk Bksk − sTk yk), otherwise.



Damped L-BFGS update

I Damped limited-memory BFGS method (2)

Bk = σk I + [Sk Ȳk ]Dk

[
ST
k

Ȳ T
k

]

where Dk is a 2m × 2m matrix and

[Sk Ȳk ] = [sk−m, . . . , sk−1, ȳk−m, . . . , ȳk−1] ∈ Rn×2m,

sk = xk+1 − xk , ȳk = θkyk + (1− θk)Bksk



Global convergence

I This proof is using the idea of Powell’s paper (Variable metric
methods for constrained optimization 1983).

Theorem
Suppose that iterates are generated by the algorithm. Suppose
that the sequences {xk : k = 1, 2, 3, . . .} and
{xk + dk : k = 1, 2, 3, . . .} are contained in a closed, bounded,
convex region of Rn in which f and ci have continuous first
derivatives. Suppose that the matrices {Bk : k = 1, 2, 3, . . .} and
multipliers are bounded and that σ satisfies

σ ≥ ‖λk+1‖∞ + σ̄, ∀k ,

where σ̄ > 0 is a constant. Then all limit points of the sequence
{xk : k = 1, 2, 3, . . .} are KKT points of the original problem (1).



Applications

I Y. Wang, S. Ma and Q. Ma. Full Space and Subspace
Methods for Large Scale Image Restoration, in: Y. F. Wang,
A. G. Yagola and C. C. Yang eds., Optimization and
Regularization for Computational Inverse Problems and
Applications, Beijing/Berlin: Higher Education Press and
Springer, 2010.

I Y. Wang and S. Ma, A fast subspace method for image
deblurring, Applied Mathematics and Computation, 215
(2009), pp. 2359-2377.

I Liu et al, Limited Memory Block Krylov Subspace
Optimization for Computing Dominant Singular Value
Decompositions, SIAM Journal on Scientific Computing, 35
(2013), pp.A1641A1668.
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