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Equality Constrained Optimization (ECO)

minimize f(x)

subject to ¢i(x) =0, i=1,....,me
» f(x), ci(x) are smooth functions.
» Lagrangian function
L(x,\) = f(x) + AT c(x),

where A = (A1,...,Am )7, c(x) = (c(x), ..., cm. (X)) T



Notations

v

g(x) = Vf(x), A(x) = Vec(x) = (Va(x),...,Vcm.(x))
fi = f(xk), ck = c(x«), gk = &(xx) = Vf(xx), and so on.

v

v

Hessian of Lagrangian

V2L(x,A) = W(x,A) = V?F(x) + Y \iV2ci(x)
i=1

v

Exact penalty function
o(x,0) = f(x) + al[c(x)]],

where o > 0 is a penalty parameter.



Lagrange-Newton method

Vxl(x,\) = g(x) + A(x)A =0

c(x)=0
U  Newton's method
[W(Xk,)\k) Ak] [ dl_ _gk+Ak)\k}
Al 0 AN i Ck
T

[W(xk,)\k) Ak} [d | 'gk]
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Sequential Quadratic Programming (SQP) method

Bic = W(xi, M) = V2F(x) + > A0V ()
i=1
I SQP method
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minimize g, d + Ed Bid

subject to ¢, + Ald =0



SQP Algorithm

» Step1  Given xg, By, € >0, 09, k:=0.
» Step 2 If ||gk + AkAk|| + ||ck|| < €, then stop.
Solve the subproblem (1)
1
minimize g/ d + EdTBkd

subject to ¢ +Ald =0
to obtain dy.
» Step 3 Carry out line search to obtain ay > 0, set
Xk+1 = Xk + akdi.

» Step 4  Generate Byy1, 0k+1, k = k+1, go to Step 2.



Quasi-Newton update

V2L(xkr1, Mr1) (k1 — Xk) = Vel (Xir1, Mr1) — Vel (xk, Ak)

» Approximate Hessian
By1 ~ V>2<L(Xk+1, Ak+1)
» Quasi-Newton equation
Br+1sk = yk,

where s = X1 — Xk, Yk = VieLl(Xk1, A1) — Vel (Xie, Ak)
> In general, symmetric and positive definite By is required in
line search type method.



BFGS and L-BFGS update

» BFGS update

T T
Bksksy Bk ykyy
s) Brsk sy Yk

Bii1= Bk —

» Limited-memory BFGS update

Sk

Bk:O'kI_"[Sk Yk]Dk v
k

where o > 0, Dy is a 2m x 2m matrix and

[Sk Yi] = [Skemy - -« s Ske1, Yhems - - > Yk—1] € R™<2™



Damped BFGS update

> In ECO case, s,z—yk > 0 may not hold.

» Damped BFGS updating for SQP

Bisks! Bk . kil

Bky1 = Bk — -
s) Bisk 7

where Yk = kak + (1 — ek)BkSk,

g, -4 L if sy >0.2s] Bisi
71 (0.85] Bisk)/(s{ Bisk — s yk), otherwise.



Damped L-BFGS update

» Damped limited-memory BFGS method (2)
S;
VkT

[Sk YAl = [Skemy - - Ske1s Fkmms - - - » Tk—1] € R,

By = okl +[Sk  Yi]Dx

where Dy is a 2m X 2m matrix and

Sk = Xk+1 — Xk Yk = Okyk + (1 — 0k) Bies



Global convergence

» This proof is using the idea of Powell's paper (Variable metric
methods for constrained optimization 1983).

Theorem

Suppose that iterates are generated by the algorithm. Suppose
that the sequences {xx : k =1,2,3,...} and

{xx +di:k=1,2,3,...} are contained in a closed, bounded,
convex region of R" in which f and c¢; have continuous first
derivatives. Suppose that the matrices {By : k =1,2,3,...} and
multipliers are bounded and that o satisfies

o> H/\k+1HOO +a, Vk,

where & > 0 is a constant. Then all limit points of the sequence
{xx: k=1,2,3,...} are KKT points of the original problem (1).



Applications

» Y. Wang, S. Ma and Q. Ma. Full Space and Subspace
Methods for Large Scale Image Restoration, in: Y. F. Wang,
A. G. Yagola and C. C. Yang eds., Optimization and
Regularization for Computational Inverse Problems and
Applications, Beijing/Berlin: Higher Education Press and
Springer, 2010.

> Y. Wang and S. Ma, A fast subspace method for image
deblurring, Applied Mathematics and Computation, 215
(2009), pp. 2359-2377.

> Liu et al, Limited Memory Block Krylov Subspace
Optimization for Computing Dominant Singular Value
Decompositions, SIAM Journal on Scientific Computing, 35
(2013), pp.-A1641A1668.
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