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Abstract
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1.  Introduction

 A situation in which individuals or groups of individuals or organizations compete by

expending effort or resources to win a prize, which is referred to as a contest, is common in the

real world.  An example is an election in which candidates compete to be the president of a

country.  Another example is a rent-seeking contest in which firms compete to win rents created

by government protection or those generated by governmental trade policies.  Yet another

example is a patent-seeking contest in which firms or researchers compete to obtain a patent.

Other examples of a contest include litigation, various sporting contests, competition for college

admission, and competition for a job or promotion to a higher rank.

 A strand of the literature on contests deals with endogenous timing of effort exertion in

contests.  In this strand of the literature, a well-known result is that the contestants choose their

effort levels sequentially.  Specifically, the seminal papers of Baik and Shogren (1992) and

Leininger (1993) consider two-player asymmetric contests in which there are two points in time

at which the players may choose their effort levels; the players decide independently and

announce simultaneously when they each will expend their effort, and then each player chooses

her effort level at the point in time which she announced.  They show that the weak player in

terms of the players' composite strength determined by their valuations for the prize and their

relative abilities announces the  while the strong player announces the  first point in time second

point in time; accordingly, the weak player chooses her effort level before the strong player.1

 The intuition behind this result is as follows.  Note first the following fact obtained in the

effort-expending stage: Around the intersection of the players' reaction functions, the weak

player's reaction function is decreasing in the strong player's effort level (measured along the

horizontal axis) while the strong player's reaction function is increasing in the weak player's

effort level.  To put this differently, around the intersection, the weak player regards her effort as

a strategic substitute to the strong player's while the strong player regards her effort as a strategic

complement to the weak player's.   Given this fact, the weak player wants to take the leadership2

role in the effort-expending stage because she, as the leader, can show the strong player her
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commitment in the form of exerting low effort to avoid a big costly fight.  On the other 

hand, the strong player wants to concede the leadership role because she, as the follower, can

compete efficiently against the weak player by responding with an appropriate level of effort to

the weak player's challenge.  Surprisingly, what the players want to do is perfectly compatible,

and is actually carried out.

 Now, a natural question that arises is: What happens if another player is present in such

contests?  Do the players in three-player contests choose their effort levels in some sequential

manner?  In particular, is there any player that wants to concede the leadership role and actually

chooses her effort level after some other player?

 To address these questions, we study a three-player Tullock contest in an endogenous-

timing framework, focusing on the players' decisions on timing of effort exertion.  In this model,

as in those of Baik and Shogren (1992) and Leininger (1993), each player's valuation for the

prize is exogenously fixed and publicly known, and the players' relative abilities to convert effort

into probability of winning are also publicly known.  There are two points in time at which the

players may choose their effort levels.  Each player chooses her effort level at either of the two

points, but not at both points.  The players play the following game.  First, the players decide

independently and announce simultaneously whether they each will expend their effort at the

first point in time or at the second point in time.  Then, knowing when the players choose their

effort levels, each player independently chooses her effort level at the point in time which she

announced.  A player who chooses her effort level at the second point in time knows exactly

what happened at the first point in time.

 Three-player contests in which the players' order of moves is endogenously determined

are easily observed in the real world.  One example may arise in three-candidate competition for

presidential office.  Given two time periods, the early period and the late period, in which the

candidates may hold their election campaigns, the candidates first decide and announce when

they will hold their (main) campaigns, and then actually run their campaigns according to their

announced campaign schedules.   Another example may arise in three-firm patent competition3
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with two time periods, the early period and the late period.  The firms first announce (and

commit to) when they will undertake their (main) research activities, and then carry out their

research activities according to their announced research plans.  Indeed, recently, we observed

that vaccine makers first announced their development plans for vaccines for COVID-19 and

then actually expended their effort according to their announced plans.

 We find that, given  among the players, the game has a moderate asymmetries unique

subgame-perfect equilibrium, where each of the players announces the , andfirst point in time

thus they all choose their effort levels simultaneously at the first point in time.  This finding is in

sharp contrast to the aforementioned well-known result obtained from two-player asymmetric

contests with endogenous timing.  Indeed, given moderate asymmetries among the players, the

presence of an additional player makes a big difference in the equilibrium timing of effort

exertion.

 More detailed explanations for the main result will be given later in Sections 4 and 5, but

here it is desirable to give a brief explanation for it.  In the three-player contest, if a player were

to announce the , then she would suffer seriously from the second-moversecond point in time

disadvantage in the effort-expending stage because the leaders, if any, would not restrain

themselves due to intense competition between themselves.  On the other hand, if the player

announces the , then she may exercise strategic leadership and enjoy a first-first point in time

mover advantage in the effort-expending stage or, at least, she will compete with the other

players on equal footing in the effort-expending stage.  Consequently, the player is better off by

announcing the  rather than the .first point in time second point in time

 Other papers which study endogenous timing in contests include Nitzan (1994), Morgan

(2003), Fu (2006), Konrad and Leininger (2007), Hoffmann and Rota-Graziosi (2012), and Baik

and Lee (2013).  All these papers, except Konrad and Leininger (2007), study contests in which

just two contestants compete for a prize.  Konrad and Leininger (2007) use an all-pay-auction

contest success function, Hoffmann and Rota-Graziosi (2012) use a general contest success

function, and the rest use logit-form contest success functions.
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 In Nitzan (1994), Konrad and Leininger (2007), and Baik and Lee (2013), each player's

valuation for the prize is exogenously fixed and publicly known at the start of the game.  In

Morgan (2003) and Fu (2006), however, it is drawn from a probability distribution which is

publicly known at the start of the game after the players announce when they will expend their

effort.  The realized valuations are revealed to both players, in Morgan (2003), while the realized

common valuation is revealed to only one of the two players, in Fu (2006).  By contrast, in

Hoffmann and Rota-Graziosi (2012), the players' common valuation for the prize is

endogenously determined, depending only on their effort levels, and the "valuation function" is

known to the players at the start of the game.

 These papers all show that the contestants choose their effort levels sequentially.

Specifically, Fu (2006) shows that the uninformed player chooses her effort level before the

informed player.  Considering a contest, or an all-pay auction, in which each player's cost

function is a general convex function of effort, Konrad and Leininger (2007) show that the

player with the lowest cost of effort typically chooses her effort level late while the other players

each choose their effort levels either early or late.  Hoffmann and Rota-Graziosi (2012) show

that in some cases the players choose their effort levels sequentially while in others they do so

simultaneously.  Baik and Lee (2013) consider a two-player contest in which the players hire

delegates and announce simultaneously their contracts, then the delegates decide independently

and announce simultaneously whether they each will expend their effort at the first point in time

or at the second point in time, and finally each delegate chooses his effort level at the point in

time which he announced.  They show that the weak delegate, or the delegate with less

contingent compensation, announces the  while the strong delegate announcesfirst point in time

the , and thus the weak delegate chooses his effort level before the strongsecond point in time

delegate.

 This paper is related also to the literature on endogenous timing in an oligopoly (model).

Reinganum (1985), Gal-Or (1985), Dowrick (1986), Boyer and Moreaux (1987), and Robson

(1990) study endogenous role selection in a duopoly.  Hamilton and Slutsky (1990) study
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endogenous timing in two duopoly games, the extended game with observable delay and the

extended game with action commitment.  Deneckere et al. (1992) examine the incentives to lead

and follow in a price-setting game in which two firms have loyal consumer segments, and then

examine two games of timing of price announcements.  Matsumura (1999) studies endogenous

sequencing in a quantity-setting oligopoly model with firms.  In his model, there are periodsn m 

in which the firms may choose their output levels.  He shows that, in every pure-strategy

equilibrium, at least 1 firms choose their output levels simultaneously in the first period.n

Hoffmann and Rota-Graziosi (2020) generalize "the extended game with observable delay" in

Hamilton and Slutsky (1990), and study endogenous timing when the payoff or the marginal

payoff of a player becomes non-monotonic with respect to the opponent's strategy.

 The paper proceeds as follows.  In Section 2, we present the model of a three-player

contest and set up a two-stage game.  In Section 3, we analyze the proper subgames starting at

the second stage, and obtain each player's equilibrium effort levels and expected payoffs in these

subgames.  Section 4 looks at the first stage in which the players decide independently and

announce simultaneously when they each will expend their effort, and obtains the subgame-

perfect equilibrium of the full game.  In Section 5, we first study a two-player contest in an

endogenous-timing framework, and then compare the equilibrium timing of effort exertion in

this two-player contest with that in the three-player contest.  Section 6 considers variations of the

main model presented in Section 2, and discusses restrictions on the parameters imposed by

Assumption 2.  Finally, Section 7 offers our conclusions.

2.  The model

 Consider a contest in which three risk-neutral players, 1 through 3, compete with each

other by expending irreversible effort to win a prize.  The players' valuations for the prize may

differ.  Their abilities to convert effort into probability of winning also may differ.  There are

two points in time, points 1 and 2, at which the players may choose their effort levels.  Each

player chooses her effort level at either of the two points, but not at both points.  The players
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play the following game.  First, the players decide independently and announce simultaneously

whether they each will expend their effort at point 1 or at point 2.  Then, knowing when the

players choose their effort levels, each player independently chooses her effort level at the point

in time which she announced.  A player, if any, who chooses her effort level at point 2 observes

the effort levels, if any, chosen at point 1 before she does.

 Let {1, 2, 3} denote the set of the players.  Let , for , denote player 'sN v i N i´ i −

valuation for the prize.  We assume that each player's valuation for the prize is positive and

publicly known at the start of the game.  Without loss of generality, let , where 0v vi i iœ " "3 

and 1, and let 1."3 3œ œv

 Let , for , denote player 's effort level, where .  Let  denote player 'sx i N i x R p ii i i− − +

probability of winning the prize, where 0 1 and 1.  Let  denote a 3-tuple vectorŸ Ÿ œp pi k
k

3

1œ

x

of effort levels, one for each player: ( , , ).  Then we assume the following contestx ´ x x x1 2 3

success function for player :i

  p   p  i iœ œ( ) , (1)x  5i ix X     X
X

Î 
Î œ

for  0
1 3          for  0

where 0, 1, and .   The parameter  indicates player 's ability5 5 5i i œ œ  5 53 1 1 2 2 3
4X x x x i

in the contest relative to the other players.  For example, , for , , means that player5j k 5 j  k N−

j k ceteris paribus x x j has more ability than player in that, , if 0, then player 's probabilityj kœ 

of winning is greater than player 's.  We assume that the parameter , for , is publiclyk i N5i −

known at the start of the game.  Function (1) implies that, , player 's probabilityceteris paribus i

of winning is increasing in her effort level at a decreasing rate; however, it is decreasing in a

rival's effort level at a decreasing rate.

 Let  for .  Then is the product of player 's valuation for the prize andw v i N w  ii i i i´ −" 5 3

her ability parameter, and thus it indicates her "composite strength" in the contest relative to the

other players.
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Assumption 1.  , , 1.We assume without loss of generality that w w w1 2 3    œ

We will make further assumptions on the parameters later, during the analysis, which may be

considered as defining a three-player contest narrowly (see Assumption 2).

 Let denote the expected payoff for player .  Then the payoff function for player  is:1i i i 5

   ( )  (2)1i i i iœ  œv p  x  .x   w x X  x     X
v              X

i i i

i

Î 
Î œ

 for  0
3     for  0



 We formally consider the following game.  In the first stage, each player chooses

independently between  and .  The players announce (and commit to) their choicesPoint 1 Point 2

simultaneously (or, equivalently, without knowing their rivals' choices).  In the second stage,

after knowing when the players choose their effort levels, each player independently chooses her

effort level at the point in time which she announced in the first stage.   A player, if any, who6

chooses her effort level at point 2 observes the effort levels, if any, chosen at point 1 before she

does.  At the end of this stage, the winner is determined.

 We assume that the structure of the game is common knowledge among the players.  We

employ subgame-perfect equilibrium as the solution concept.

3.  Subgames starting at the second stage

 To obtain a subgame-perfect equilibrium of the game, we work backward.  In this

section, we analyze the proper subgames starting at the second stage, and obtain each player's

equilibrium effort levels and expected payoffs in these subgames.  Then, in Section 4, we look at

the players' decisions, in the first stage, on when to expend their effort.7

 There are eight proper subgames which start at the second stage, but we need to analyze

the following seven subgames: a simultaneous-move subgame and six sequential-move

subgames.   A simultaneous-move subgame arises when the three players choose and announce8
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the same point in time, either  or , in the first stage.  If player , for ,Point 1 i i NPoint 2 −

announces but the rest announce , then the  sequential-move subgame arises.Point 1 Point 2 iL 9

Finally, the  sequential-move subgame, for 1, 2 and 2, 3 with , arises whenjkL j k j kœ œ Á

players  and  announce  but the remaining player announces j k Point 1 Point 2.10

3.1.  A simultaneous-move subgame

 In this subgame, the players choose their effort levels simultaneously and independently.

Accordingly, player , for , seeks to maximize  in (2) over her effort level , given heri i N x− 1i i

belief about the other players' effort levels.

 From the first-order condition for maximizing , we first derive player 's reaction1i i

function (see Appendix A).   Then, using the players' reaction functions, we obtain a unique11

Nash equilibrium, which is denoted by the vector ( , , ).  Next, substituting into (2)xS ´ x  x xS S S
1 2 3

the players' equilibrium effort levels, we obtain player 's expected payoff  at the Nashi  1S
i

equilibrium.  We report them in Lemma A in Appendix A.

 It is straightforward to check that, under Assumption 1, all the players are active that

is, they expend positive effort at the Nash equilibrium if and only if . w w w w1 2 1 2

3.2.  The iL sequential-move subgame 

 Fix player , for .  In this subgame, player  first chooses her effort level at point 1.i i N i−

Then, after observing player 's effort level, the rest choose their effort levels simultaneously andi

independently at point 2.

 Let , for , denote player 's effort level specified in an equilibrium of the x h N h iLiL
h −

sequential-move subgame.  Let  denote player 's expected payoff in the equilibrium.  We1iL
h h

obtain and report them in Appendix B.

 It is straightforward to check that, under Assumption 1, all the players are active in the

equilibrium of the  sequential-move subgame if and only if ( 1) 2 for 1,iL w w w i1 2 2   œ

w w w i w w w w i2 1 1 1 2 1 2( 1) 2 for 2, and  for 3.   œ  œ
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3.3.  The jkL sequential-move subgame 

 Fix players  and , for 1, 2 and 2, 3 with .  In this subgame, players  and j k j k j k j kœ œ Á

first choose their effort levels simultaneously and independently at point 1.  Then, after

observing their effort levels, the remaining player chooses her effort level at point 2.

 Let , for , denote player 's effort level specified in an equilibrium of the x h N h jkLjkL
h −

sequential-move subgame.  Let  denote player 's expected payoff in the equilibrium.  We1 jkL
h h

obtain and report them in Appendix C.

 It is straightforward to check that, under Assumption 1, all the players are active in the

equilibrium of the  sequential-move subgame if and only if 1.5  for 12,jkL w w w w jk1 2 1 2 œ

w jk w jk1 2  œ2 for 13, and 2 for 23.œ

4.  Players' decisions on when to exert effort

 We consider the first stage of the full game in which the players each announce when to

expend their effort.  Which point in time does each player choose and announce in a subgame-

perfect equilibrium of the full game?

 In the first stage, each player has perfect foresight about the equilibrium of every second-

stage subgame, and thus about the players' second-stage equilibrium expected payoffs reported

in Lemmas A through C.  Figure 1 illustrates the strategic interaction among the players in the

first stage.  Panel A of Figure 1 illustrates it when player 3 announces in the first stage,Point 1 

while panel B illustrates it when player 3 announces .  For example, if player 3 announcesPoint 2

Point 1 Point 2 but the rest announce , then the 3  sequential-move subgame will arise, whichL

will lead to the payoff vector ( , , ) in panel A.1 1 13 3 3
1 2 3

L L L

 We restrict our analysis to cases where all three players are active in the equilibrium of

every second-stage subgame (see Section 6.2).  It follows from the assumptions stated in

Lemmas A through C that, under Assumption 1, these cases occur if and only if Assumption 2

holds.
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Assumption 2.  ( 1) 2  1.5 .We assume that w w w and w w w w1 2 2 1 2 1 2   

 Note that these two inequalities in Assumption 2 come from the assumptions stated in

part ( ) of Lemmas B and that of Lemma C, respectively.  Figure 2 illustrates the values of i w1

and  (or, equivalently,  and ), which satisfy both Assumption 1 and Assumption 2.w2 1 1 2 2" 5 " 5

In other words, at the values of  and  located in the shaded area of Figure 2, all three playersw w1 2

are active in the equilibrium of every second-stage subgame.  Note that the northeast part of the

shaded area is bounded by the "active-players-in-equilibrium condition" for the 1  sequential-L

move subgame, ( 1) 2, and that for the 12  sequential-move subgame,w w w L1 2 2  

w w w w1 2 1 2  1.5 .

 Now, we compare, for each player, the second-stage equilibrium expected payoffs

reported in Lemmas A through C.  Under Assumptions 1 and 2, it is straightforward to obtain

Lemma 1.

Lemma 1.  Under Assumptions and  we obtain: a and 1  2, ( ) , , , 1 1 1 1 1 1S L L L L L
1

23 12 2 13 3
1 1 11 1  

1 1 1 1 1 1 1 1 1 1 1 1 1 11 13 12 1 23 3 2 12 13 1
1 2 2 2 3 31 2 2 32 2 2 3

L S S L L L L L L S S L L L      ; ( ) , , ,  ;  ( ) , ,b and and c

1 1 1 123 2 3
3 33 3

L L L S ,  .and

 Suppose, for example, that players 2 and 3 each announce .  In this case, if playerPoint 1

1 also announces  then a simultaneous-move subgame will arise, which will lead to Point 1, 1S
1

for her.  If instead player 1 announces  then the 23  sequential-move subgame will arise,Point 2, L

which will lead to  for her.  Part ( ) says that .1 1 123 23
1 11

L S La 

 Suppose, for another example, that players  and  each, for 1, 2 and 2, 3 withj k j kœ œ

j k Point 2 iÁ , announce .  In this case, if the remaining player, player , also announces Point 2,

then a simultaneous-move subgame will arise, which will lead to  for her.  If instead player 1S
i i

announces  then the  sequential-move subgame will arise, which will lead to  forPoint 1, iL xiL
i

her.  Lemma 1 says that , for .  This comparison result can be easily understood1 1iL S
i i i N−
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because, in the  sequential-move subgame, player  is the first mover, and thus one of heriL i

options is to receive the payoff  by choosing her effort level at the Nash equilibrium of a1S
i

simultaneous-move subgame.

 Note that Lemma 1 holds even for the case where the three players have equal composite

strength: 1.   Using Lemma 1, we obtain the following result regarding thew w w1 2 3
12œ œ œ

players' decisions on timing of effort exertion.

Proposition 1.   1  2, , Point 1 Under Assumptions and for every player leads to a higher second-

stage equilibrium expected payoff than does no matter what the other players announce Point 2, 

in the first stage Consequently  under Assumptions and the game has a unique subgame-.  ,  1  2, 

perfect equilibrium in which every player announces  in the first stage.Point 1

 The result that player , for , announces in the first stage, no matter what thei i N Point 1 −

other players announce, can be explained as follows.  Consider first the case where the other

players both announce .  Player  has two options: either to announce  or toPoint 1 i Point 1

announce .  If she announces , then she will compete with the other players onPoint 2 Point 1

equal footing in the effort-expending stage: The three players will choose their effort levels

simultaneously and independently at point 1.  On the other hand, if player  announces ,i Point 2

then she, as the only follower, will suffer seriously from the second-mover disadvantage in the

effort-expending stage: She will face the aggressive leaders because the leaders themselves will

compete and choose high effort levels at point 1.   Accordingly, given that the other players13

both announce , player  also announces .Point 1 i Point 1

 Next, consider the case where the other players announce different points in time: Player

j k j  k N i j k announces  while player  announces , for , { } with .  In this case,Point 1 Point 2, − Ï Á

if player  announces , then she will be one of the two leaders in the effort-expendingi Point 1

stage; however, if she announces , then she will be one of the two followers.  Since aPoint 2



12

first-mover advantage exists in the effort-expending stage, player  is better off by announcingi

Point 1 Point 2 rather than .

 Finally, consider the case where the other players both announce .  In this case,Point 2

too, player  is better off by announcing  rather than .  The intuition is obvious.i Point 1 Point 2

Given that the other players both announce , if player  announces , then she willPoint 2 i Point 1

exercise strategic leadership and enjoy a first-mover advantage in the effort-expending stage.

However, if player  announces , then she will play a simultaneous-move game with thei Point 2

other players in the effort-expending stage, which will result in a smaller expected payoff to

player  as compared to player 's announcing .i i Point 1 14

5.  Comparison with two-player asymmetric contests

 In this section, we first study briefly a two-player contest in an endogenous-timing

framework.  Then we compare the equilibrium timing of effort exertion in this two-player

contest with that in the three-player contest analyzed in the preceding sections.

 Consider a contest which is the same as the one in Section 2 with the exception that now

only player , for 1 or 2, and player 3 compete to win a prize.  Specifically, consider theh h œ

following game.  In the first stage, each player chooses independently between  and Point 1 Point

2.  The players announce (and commit to) their choices simultaneously.  In the second stage,

after knowing when the players choose their effort levels, each player independently chooses her

effort level at the point in time which she announced in the first stage.  A player who chooses her

effort level at point 2 observes the effort levels chosen at point 1 before she does.

 Now that the analysis is similar to that in Sections 3 and 4, it is relegated to Appendix D.

As shown in Appendix D, under the assumption that 1 2, we obtain the following result wh

on the players' decisions on timing of effort exertion.15

Remark 1.   1  1 2, , 3Under Assumption and the assumption that w in equilibrium player  h

announces while player h announces  Point 1,  Point 2.
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 Remark 1 implies that the weak player (in terms of composite strength) chooses her effort

level before the strong player.  The intuition behind this well-known result has been explained in

Section 1 (see also Baik and Lee, 2013), and therefore is omitted.

 What happens if another player is present in the contest?  According to Proposition 1, in

the three-player contest with the restrictions on the parameters by Assumption 2, each of the

players announces , and thus they all choose their effort levels simultaneously at point 1.Point 1

Since we have provided, below Proposition 1, the detailed intuition behind this result, here we

briefly explain why we do not obtain a result similar to Remark 1.  Suppose, similarly to Remark

1, that the weakest player announces that is, she chooses to be the leader in the effort-Point 1 

expending stage while the remaining players announce .  Given the restrictions on the Point 2

parameters by Assumption 2, unlike in the two-player contest, each of the followers could not

compete efficiently against the weakest player (or the leader) in other words, the weakest

player would not trigger a softened response from each of the followers because the followers

themselves engage in intense competition.  This would make each of the followers not gain such

advantage that the follower in the two-player contest can obtain.  Further, this would lead to each

of the followers deviating from  2 to  1.Point Point 16

 Indeed, in the three-player contest with the restrictions on the parameters by Assumption

2, none of the players announce that they will be (possible) followers.  A follower, if any, would

compete with either two leaders or one leader and another follower.  In both cases, she would

suffer seriously from the second-mover disadvantage, facing the opponents who would not

restrain themselves due to more intense competition, compared to the two-player contest.

6.  Discussion

6.1.  More than three players

 We consider a model (modified from the main model presented in Section 2) in which

there are  players, where 3.  Let {1, ... , } denote the set of the players.  Withoutn n N n ´
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loss of generality, let  for , where 0 and 1, and let 1.  We assumev v i N vi i n i n nœ −" " "  œ œ

the following contest success function for player :i

  p   i œ  5i ix X                    X
n                      X  
Î 
Î œ

for  0   
1 for  0 ,

where 0, 1, and .  Let .  Assumption 1 in Section 2 is now5 5 " 5i n z z i i i n

n

z
 œ œ5 X x w v

œ1
´

replaced with Assumption 3 below.

Assumption 3.  , , 1.We assume without loss of generality that w w  . . . w1 2      n œ

 As in Section 2, we consider the following game.  In the first stage, the players each

choose independently between  and , and announce their choices simultaneously.Point 1 Point 2

In the second stage, after knowing when the players choose their effort levels, each player

independently chooses her effort level at the point in time which she announced in the first stage.

A player who chooses her effort level at point 2 observes the effort levels chosen at point 1

before she does.

 We relegate the analysis to Appendix E.  As shown in Appendix E, we obtain the

following result on the players' decisions on timing of effort exertion.

Remark 2.   3  0.5 (1 ) 2( 1) , Under Assumption and the assumption that n w n w a  Î Ÿ  În

z
z

œ1
1

subgame-perfect equilibrium occurs in which each of the n players announces Point 1.

 Note that the second assumption in Remark 2 reflects the "active-players-in-equilibrium

condition" in (E14) and the condition (E15) under which no player has an incentive to deviate

from her first-stage action, .  Note also that, due to computational intractability, wePoint 1
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merely find a subgame-perfect equilibrium, without checking its possible , in whichuniqueness

each of the  players announces .n Point 1

6.2.  Restrictions on the parameters

 In Section 4, we have assumed (Assumption 2) that all three players are active in the

equilibrium of every second-stage subgame.  Several explanations for this assumption are in

order since it appears restrictive.

 First, a three-player contest may be defined as one in which all three players are active at

the Nash equilibrium of a simultaneous-move game (or, in this paper, a simultaneous-move

subgame).  If so, the values of  and  that are relevant to our analysis are constrained byw w1 2

Assumption 1 and the "active-players-in-equilibrium condition" for a simultaneous-move

subgame,  (see Lemma A).  Then, in Figure 2, these values are located in thew w w w1 2 1 2 

area "bounded" by the horizontal line at 1, the 45  line, and curve  that represents thew S2
oœ

equation .w w w w1 2 1 2 œ

 Second, Assumption 2, which may be considered as defining a three-player contest

narrowly, enables us to  the analysis of the first stage (see Lemma 1).  Indeed, due tocomplete

Assumption 2, we are able to compare, for each player, the second-stage equilibrium expected

payoffs, and thereby to show explicitly that the game has a  subgame-perfect equilibriumunique

in which each of the three players announces  in the first stage.Point 1

 Third, it is straightforward to check that Remark 2 holds true for 3.  That is, it isn œ

straightforward to see that, under Assumption 1 and the assumption that 2.5 (1 ) 4 Î Ÿ Î3

1
1

z
z

œ

w w

or, equivalently, 1.5 (4 ) , a subgame-perfect equilibrium occurs inw w w w w w1 2 1 2 1 2 Ÿ 

which each of the three players announces  in the first stage.  In Figure 2, the values of Point 1 w1

and  that satisfy these two assumptions are located in the shaded area and in area .  (The solidw T2

border line of area  represents the equation (4 ) .)  Note that, unlikeT w w w w1 2 1 2 œ 

Assumption 2, the second assumption ensures only that all three players are active at the Nash
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equilibrium of a simultaneous-move subgame and in the equilibrium of the  sequential-movejkL

subgame, for 1, 2 and 2, 3 with  (see (E14) in Appendix E).j k j kœ œ Á

 Fourth, the values of  and  located in area  of Figure 2 satisfy the following strictw w K1 2

inequalities: 1.5  and (4 ) .  The first inequality ensures thatw w w w w w w w1 2 1 2 1 2 1 2   

all three players are active at the Nash equilibrium of a simultaneous-move subgame and in the

equilibrium of the  sequential-move subgame, for 1, 2 and 2, 3 with .  SatisfyingjkL j k j kœ œ Á

the second inequality implies that there is at least one player who does not announce  inPoint 1

the first stage (see (E15) in Appendix E).  Hence, at the values of  and  located in area ,w w K1 2

the game has no subgame-perfect equilibrium in which each player announces  in the firstPoint 1

stage.

6.3.  Optimal timing of effort exertion

 We have shown in Section 4 that, in the endogenous-timing framework, the three players

all choose their effort levels simultaneously at point 1.  An interesting question that arises is: If a

contest organizer or the government could decide and enforce when the players will each expend

their effort, what would the optimal timing of effort exertion be?

 We consider a variation of the main model in which the contest organizer chooses and

enforces the timing of effort exertion which maximizes (or, alternatively, minimizes) the total

effort expended by the players (see Baik, 2013; Hinnosaar, 2019).   Formally, we consider the17

following game.  In the first stage, the contest organizer decides and announces when the players

will each choose their effort levels.  In the second stage, after knowing who moves when, each

player independently chooses her effort level at the point in time which the contest organizer

assigned to her in the first stage.  A player who chooses her effort level at point 2 observes the

effort levels chosen at point 1 before she does.

 It seems to be computationally intractable to analyze this game with general values of the

parameters, , , , and .  Accordingly, we assume that 1 or, equivalently," " 5 5 " 5 " 51 2 1 2 1 1 2 2œ œ

w w1 2œ œ 1.
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 Table 1 shows, in this case, under which timing assumptions the total effort level is

maximized and minimized, respectively.  We obtain it from Lemmas A through C.  In Table 1,

X S  denotes the total effort level resulting when the players choose their effort levels

simultaneously.  In the table, , for , denotes the total effort level resulting when player X i N iiL −

chooses her effort level at point 1 and the rest choose their effort levels simultaneously at point

2.  Finally, , for 1, 2 and 2, 3 with , denotes the total effort level resulting whenX j k j kjkL œ œ Á

players  and  choose their effort levels simultaneously at point 1 and the remaining playerj k

chooses her effort level at point 2.

 Suppose, for example, that .  Table 1 shows, in this case, that the total5 5 51 2 3 

effort level is maximized when player 3 chooses her effort level at point 1 and the rest choose

their effort levels simultaneously at point 2.  Therefore, if the contest organizer desires to

maximize the total effort level, then she would announce this timing of effort exertion in the first

stage.

 Suppose, for another example, that .  Table 1 shows, in this case, that the5 5 51 2 3œ œ

total effort level is minimized if the players choose their effort levels simultaneously.  Therefore,

if the contest organizer desires to minimize the total effort level, then she would announce this

timing of effort exertion in the first stage.

 Hinnosaar (2019) studies sequential contests with identical players in which, at each

point in time, the sum of the effort levels expended by the earlier movers is publicly disclosed.

He shows that the total effort level is minimized in the simultaneous contest, and is maximized in

the fully sequential contest.  However, Table 1 indicates that the total effort level may not be

minimized in the simultaneous contest if players are asymmetric.

6.4.  Three points in time

 We have so far assumed that there are only two points in time at which the players may

choose their effort levels.  This two-point-in-time model has a limitation in that it excludes the

possibility that each player announces a point in time which is different from the other players'
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choices.  Hence, the model is vulnerable to criticism on the grounds that it examines

sequentiality versus simultaneity without actually allowing full sequentiality.

 Here we briefly consider a model (modified from the main model presented in Section 2)

in which there are three points in time (points 1, 2, and 3) at which the three players may choose

their effort levels.

 Formally, we consider the following game.  In the first stage, each of the three players

chooses independently among , , and .  The players announce (and commitPoint 1 Point 2 Point 3

to) their choices simultaneously.  In the second stage, after knowing when the players choose

their effort levels, each player independently chooses her effort level at the point in time which

she announced in the first stage.  A player who chooses her effort level at point 2 or point 3

observes the effort levels previously chosen.  At the end of this stage, the winner is determined.

 It is immediate from Remark 2 that, under Assumption 1 and the assumption that

1.5 (4 )  or, equivalently, 2.5 1 4, there exists aw w w w w w w w w w1 2 1 2 1 2 1 1 1 2  Ÿ     Î Ÿ

subgame-perfect equilibrium in which each of the three players announces in the firstPoint 1 

stage that is, no player has an incentive to deviate from  1 to  2 or  3. Point Point Point 18

 Due to computational intractability, we are unable to complete the full analysis.

However, on the basis of the results obtained in Section 4 and those described in the following

paragraph, we believe that, under Assumption 1 and the assumption that all three players are

active in the equilibrium of every subgame starting at the second stage, the subgame-perfect

equilibrium in which each of the three players announces  in the first stage is the onlyPoint 1

one.

 Assuming that 1, we find the following (see also Lee, 2007).  First, there5 51 2œ œ

exists no subgame-perfect equilibrium in which every player announces .  Second, therePoint 3

exists no subgame-perfect equilibrium in which each player announces a point in time which is

different from the other players' choices.
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7.  Conclusions

 We have studied a three-player Tullock contest in an endogenous-timing framework, 

focusing on the players' decisions on timing of effort exertion.  In this model, there are two

points in time, 1 and 2, at which the players may choose their effort levels.  The players decide

independently and announce simultaneously when they each will expend their effort, and then

each player chooses her effort level at the point in time which she announced.

 Restricting our analysis to cases where all three players are active in the equilibrium of

every second-stage subgame, we have shown that, in equilibrium, each of the players announces

Point 1, and thus they all choose their effort levels simultaneously at point 1.  This is in sharp

contrast to a well-known result from two-player asymmetric contests studied in an endogenous-

timing framework: In equilibrium, the weak player announces  and chooses her effortPoint 1

level at point 1 while the strong player announces  and chooses her effort level at point 2.Point 2

We have elaborated on this contrast in Section 5.

 In Section 6, we have considered variations of the main model presented in Section 2: a

model in which there are more than three players, a model in which a contest organizer decides

and enforces when the three players will each expend their effort, and a model in which there are

three points in time at which the three players may choose their effort levels.

 We have focused on the players' equilibrium decisions on timing of effort exertion.

However, it would be interesting to examine how the players' effort levels in the subgame-

perfect equilibrium respond when player 's valuation parameter or her ability parameter  ork  " 5k k

her composite strength , for 1, 2, changes, (see Baik, 1994).  One could," 5k k k ceteris paribus œ

no doubt, perform these comparative statics using Lemma A.

 We have assumed that player 's valuation parameter and her ability parameter , fori  " 5i i

i N− , are publicly known.  It would be interesting to study a model in which the players have

incomplete information about these parameters.  Perhaps more importantly, it would be

interesting to experimentally investigate the main qualitative predictions of the three-player

contest specifically, the equilibrium timing of effort exertion and the equilibrium effort levels
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of the players.  Further, it would be interesting to ompare these experimental results withc

existing experimental studies of two-player asymmetric contests (see, for example, Baik et al.,

1999).  We leave them for future research.
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Footnotes

1. This result can also be stated as follows: The underdog chooses her effort level before the

favorite.  Here the underdog (the favorite) is defined as the player who has a probability of

winning less (greater) than one-half at the Nash equilibrium of a two-player asymmetric contest

in which the players choose their effort levels simultaneously (see Dixit, 1987).

 This result is empirically supported by Boyd and Boyd (1995), who use data from the

track and field events held at the 1992 Summer Olympics in Barcelona, Spain.  Also, it is

experimentally supported by Baik et al. (1999), who examine subjects' behavior in a laboratory

environment in which subjects are given enough time to think about their strategies.

2. The terms  and  are defined in Bulow et al.strategic substitute strategic complement

(1985).

3. The candidates may choose from and announce one of three campaigning periods before

they campaign.  This situation can be described by the model in Section 6.4.  However, due to

computational intractability, we are unable to complete the full analysis.

4. This contest success function is extensively used in the literature on contests.  Examples

include Tullock (1980), Hillman and Riley (1989), Leininger (1993), Baik et al. (1999), Morgan

(2003), Epstein and Nitzan (2007), Konrad (2009), Baik and Lee (2013), Vojnovic (2015), andw

Balart et al. (2016).

5. We can use the following payoff function for player , for , to obtain the players'i i N−

equilibrium effort levels in Section 3:  for 0 and 3 for 0, where^ ^1 1i i i i i iœ  œw z Z z Z v ZÎ  Î œ

z x Z z z zi i i iœ œ  5  and .  Note that the function  is an increasing affine transformation^1 2 3 1

of the function .1i

6. Unless the three players announce the same point in time in the first stage, one may say

that the game has three stages.  But we do not break the effort-expending stage into two stages.

Instead, we say that the effort-expending stage has two points in time at which the players may

choose their effort levels.
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7. We will impose severe restrictions on the values of the parameters such that all three

players expend positive effort in the equilibria of the second-stage subgames.  Given these

restrictions, the full game has a unique subgame-perfect equilibrium in which each of the three

players announces  in the first stage.Point 1

8. Note that, in each of the six sequential-move subgames, two players choose their effort

levels  either at point 1 or at point 2.simultaneously

9. We use  as a shorthand for "with player  as the leader."iL i

10. We use   as a shorthand for "with players  and  as the leaders."jkL j k

11. Note that player 's payoff function in (2) is strictly concave in , which implies that thei xi

second-order condition for maximizing  is satisfied and player 's best response to the other1i i

players' effort levels is unique.  Note also that every maximization problem in this paper satisfies

globally its second-order condition and thus has a unique maximum.  Henceforth, for brevity, we

do not state it explicitly.

12. This implies that the game has a unique subgame-perfect equilibrium even in the case

where 1 (see footnote 15).w w w1 2 3œ œ œ

13. In this context, we mean that  and  , for , { } with .  It isx x x x j  k N i j kjkL jkL
j

S S
j k k  − Ï Á

straightforward to check that these inequalities hold in the case where 1.w w1 2œ œ

14. Note that, if player  announces , one of her options in the effort-expending stagei Point 1

is to choose her effort level at the Nash equilibrium of the simultaneous-move subgame.

15. Part ( ) of Lemma D implies that, if 1, then each player announces either iii w Point 1h œ

or  in equilibrium, which means that the game has multiple subgame-perfect equilibria.Point 2

16. Consider a three-player contest in which there are three points in time at which the

players may choose their effort levels (see Section 6.4).  Suppose that the weakest player

announces , while each of the remaining players announces  or .  In thisPoint 1  Point 2 Point 3

case, too, each of the two followers would be better off by deviating to .Point 1
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17. The effort expended by the players in contests is of great importance.  This is because it

accounts for various outcomes of the contests, and, in some cases, it is related to economic

performance.  In competition for presidential office, the effort expended by the players may

represent the candidates' campaign spendings.  In rent-seeking contests, it may represent bribes

given to government officials, and it is viewed as social costs due to rent-seeking activities.  In

patent competition, it may represent R&D expenditures of the firms, thereby determining the

expected date of invention.

18. Note that Remark 2 still holds true if we consider a model (modified from the main

model presented in Section 2) in which there are  players and  points in time, where 3 andn t n 

3 .Ÿ Ÿt n



24

Appendix A: A simultaneous-move subgame

 Player 1 seeks to maximize  in (2) over her effort level , taking the other players'11 1x

effort levels as given.  From the first-order condition for maximizing , we derive player 1's11

reaction function:

 x1  œ      { ( )  ( )}         for  0
0                                                             
w x x  x x x x w1 2 2 3 2 2 3 1 2 2 3 15 5 5   Î  5 Ÿ

 for  52 2 3 1x x w 
.

It is straightforward to see that  in (2) is strictly concave in , which implies that the second-11 1x

order condition for maximizing  is satisfied and player 1's best response to the other players'11

effort levels is unique.

 Similarly, we derive the reaction functions for players 2 and 3:

 x2  œ    { ( )  ( )}      for  0
0                                                            for  

w x x  x x x x w2 1 1 3 1 1 3 2 1 1 3 25 5 5
5

   Î  5 Ÿ

1 1 3 2x x w     

and

 x3  œ     ( )  ( )     for  0
0                                                        for  

w x x  x x x x w
x

3 1 1 2 2 1 1 2 2 1 1 2 2 3

1

5 5 5 5 5 5
5

     Ÿ

1 2 2 35 x w
.

 Using these three reaction functions, we obtain a unique Nash equilibrium.  Next,

substituting into (2) the players' effort levels at the Nash equilibrium, we obtain their equilibrium

expected payoffs.

Lemma A.  Assume that Assumption  holds and that w w w w a The players'1 .  ( ) 1 2 1 2 

(positive) effort levels at a unique Nash equilibrium are: x w w w w wS
1 1 2 1 2 1 2œ  Î2 ( )" 

( ) , 2 ( ) ( ) , 2 (w w w w x w w w w w w w w w and x w w w1 2 1 2 2 1 1 2 2 1 1 2 1 2 1 2 1
2 2

2 3     S Sœ  Î œ"
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w w w w w w w b The players' expected payoffs at the Nash equilibrium are:2 1 2 1 2 1 2
2 Î) ( ) .  ( )   

1 " 1 "S S
1 21 1 2 1 2 1 2 1 2 2 1 2 2 1 1 2 1

2 2 2œ      ( ) ( ) , ( ) (w w w w w w w w w w w w w w w Î œ  Î

w and w  w w w w w w w2 1 2 1 2 1 2 1 2
2 2 2

3) , ( ) ( ) .1S œ  Î  

 It is immediate from part ( ) that  players 1 and 2 are always activea , under Assumption 1,

at the Nash equilibrium at the Nash equilibrium if and only , but player 3 is active if

w w w w1 2 1 2  .  It is also immediate from  that all the players are active part ( ) at the Nasha

equilibrium if players 2 and 3 have the same composite strength: 1.w w2 3œ œ

Appendix B:  The  sequential-move subgameiL

 Fix player , for .  In this subgame, player  first chooses her effort level at point 1.i i N i−

Then, after observing player 's effort level, the rest choose their effort levels simultaneously andi

independently at point 2.

 To solve for an equilibrium of the 1  sequential-move subgame, we work backward.  AtL

point 2, players 2 and 3 know player 1's effort level .  Player 2 seeks to maximize  in (2)x1 21

over her effort level , taking player 3's effort level as given.  From the first-order condition forx2

maximizing , we derive player 2's reaction function:12

 x2  œ      { ( )  ( )}     for  0
0                                                          for  
w x x  x x x x w2 1 1 3 1 1 3 2 1 1 3 2

1

5 5 5
5

   Î  5 Ÿ
x x w1 3 2 

.

Similarly, we derive the reaction function for player 3:

 x3  œ    ( )  ( )     for  0
0                                                       for  

w x x  x x x x w
x

3 1 1 2 2 1 1 2 2 1 1 2 2 3

1 1

5 5 5 5 5 5
5

    


Ÿ
52 2 3x w  .

Using these two reaction functions, we obtain the Nash equilibrium at point 2:

 x x w w x w w w w x wN
2 1 2 1 1 2 2 2 1 1 2 2

2 2
2

2
2( )  { 2( 1) 4 ( 1) } 2( 1)œ     Î 5 5 5 
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and

 x x w w w x w w w x wN
3 1 2 2 2 1 1 2 2 1 1 2

2
2

2( )  { 2 ( 1) 4 ( 1) } 2( 1) .œ     Î 5 5 

 Next, consider point 1 at which player 1 chooses her effort level.  Let ( ) be player 1's11 1x

expected payoff computed at point 1 of the subgame which takes into account the Nash 

equilibrium at point 2.  Substituting ( ) and ( ) into (2), we obtainx x x xN N
2 31 1

 ( )  2 ( 1) { 4 ( 1) }  .1 51 1 1 2 1 2 2 2 1 1 1
2
2x w w x w w w w x xœ  Î    

 At point 1, player 1 has perfect foresight about ( ) for any value of .  She chooses a11 1 1x x

value of which maximizes ( ).  From the first-order condition for maximizing ( ), wex  x x1 1 1 1 11 1

obtain player 1's equilibrium effort level .x1
1

L

 Substituting  into ( ) and ( ) above, we obtain the equilibrium effort levels ofx x x x x1
1 2 31 1
L N N

players 2 and 3,  and , respectively.  Substituting into (2) the players' equilibrium effortx x1 1
2 3
L L

levels, we obtain player 's equilibrium expected payoff , for .h  h N11L
h −

 Similarly, we obtain the players' equilibrium effort levels and their equilibrium expected

payoffs in the 2  and the 3L sequential-move subgame.L

Lemma B.  Assume that Assumption  holds i Assuming that w w w we obtain1 .  ( )  ( 1) 2, 1 2 2  

the following in a unique equilibrium of the L sequential-move subgame a The players'1  .  ( ) 

(positive) effort levels are: x w w w w w x w w1 2 2 2 1 3 2
1 1 2 2 22 1 2 2 2

L Lœ   Î  œ  { ( 1) } 4 ( 1), {25

w w w w w w w and x w w w w w2 2 2 2 1 2 2 2
1 2 3 2 12 1 2 2 2 2 2 2 1( 1) 2 ( 1)} 4 ( 1) , { 2 ( 1) 2   Î  œ    5 L

( 1)} 4( 1) .  ( ) { ( 1) }w w b The players' expected payoffs are: w w w2 2 1 2 2
2 1 2

1 Î    Î1 L œ

4 ( 1), {2 ( 1)} 4 ( 1) , { 2 (5 1 5 11 2 2 2 1 2 2 2 2 2 1 2
1 2 2 2 1
2 2 3w w w w w w w w and w w w œ    Î  œ  L L

 Î 1)} 4( 1) .2 2
2w

( ) ( 1) 2, ii Assuming that w w w we obtain the following in a unique equilibrium of the2 1 1  

2  .  ( ) {2L sequential-move subgame a The players' (positive) effort levels are: x w w2 3 2
1 11
L œ 

    Î  œ   Î w w w w w w w x w w w w w2 2 2 2 2 2 2 2
2 1 2 2 11 2 1 1 1 1 1 2 1 1( 1) 2 ( 1)} 4 ( 1) , { ( 1) } 4 ( 1),5 5L
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and x w w w w w w w b The players' expected2 2 2 2 2
3 1 21 1 2 1 1

L œ      Î {  2 ( 1) 2 ( 1)} 4( 1) .  ( ) 

payoffs are: w w w w w w w w w {2 ( 1)} 4 ( 1) , { ( 1) }1 5 12 2 2 2 2 2
1 1 21 2 1 1 1 1 2 1 1

L Lœ    Î  œ   Î

4 ( 1), { 2 ( 1)} 4( 1) .5 12 1 1 1 2 1 1
2 2 2
3w w and w w w w œ    Î L

( ) , 3iii Assuming that w w w w we obtain the following in a unique equilibrium of the L1 2 1 2 

sequential-move subgame a The players' (positive) effort levels are: x w w w w.  ( ) {23 3 2 2
1 1 2 1 2
L œ 

    Î  œ    ( ) 2 ( )} 4 ( ) , {2 ( ) 2w w w w w w w w x w w w w w w w1 2 1 2 1 1 1 2 1 1 2
2 2 2 3 3 2 2 2 2

1 1 2 22 25 L

( )} 4 ( ) , {( ) } 4 ( ).  ( ) w w w w w and x w w w w w w w w b The1 2 2 2 1 2 1 2 1 2 1 2
2 3 2 2 2

3 1 2 Î  œ   Î 5 L

players' expected payoffs are: w w w w w w w w1 5 13 2 2 2 3
1 21 1 2 1 2 1 1 1 2

L Lœ {2 ( )} 4 ( ) ,    Î  œ

{2 ( )} 4 ( ) , ( ) 4 (w w w w w w w w and w w w w w w w2 2 2 3 2
2 1 2 1 2 2 2 1 2 1 2 1 2 1 2 13   Î  œ   Î 5 1 L

w2).

Appendix C: The  sequential-move subgamejkL

 Fix players  and , for 1, 2 and 2, 3 with .  In this subgame, players  and j k j k j k j kœ œ Á

first choose their effort levels simultaneously and independently at point 1.  Then, after

observing their effort levels, the remaining player chooses her effort level at point 2.

 To solve for an equilibrium of the 12  sequential-move subgame, we work backward.  AtL

point 2, player 3 knows player 1's effort level, , and player 2's effort level, .  Player 3 seeksx x1 2

to maximize  in (2) over her effort level .  From the first-order condition for maximizing ,1 13 3 3x

we derive player 3's strategy in any equilibrium:

 x x x3 1 2( , ) œ  w x x  x x x x w3 1 1 2 2 1 1 2 2 1 1 2 2 3( )  ( )    for  0
 0                                                          for

5 5 5 5 5 5     Ÿ
         5 51 1 2 2 3x x w 

. (C1)

 Next, consider point 1 at which players 1 and 2 choose their effort levels simultaneously 

and independently.  Let ( , ), for 1, 2, be player 's expected payoff computed at point1j x x j j1 2 œ 

1 of the subgame which takes into account player 3's equilibrium strategy in (C1).

Substituting ( , ) in (C1) into (2), we obtainx x x3 1 2
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 ( , )  ( )  1 5 51 1 2 1 1 1 1 2 2 1x x w x x x xœ Î  
and (C2)

 ( , )  ( )  .1 5 52 1 2 2 2 1 1 2 2 2x x w x x x xœ Î  

At point 1, players 1 and 2 have perfect foresight about ( , ) and ( , ) for any values of1 11 1 2 2 1 2x x x x

x x1 2 and .

 We first derive the reaction function for player 1.  Player 1 seeks to maximize ( , )11 1 2x x

in (C2) over her effort level , taking player 2's effort level as given.  The first-orderx x  1 2

condition for maximizing ( , ) reduces to11 1 2x x

  4( )   ( 2 )   0. (C3)5 5 5 51 1 2 2 1 1 2 2
3 2 2

1x x w x x   œ

Solving equation (C3) for , we obtain player 1's best response to player 2's effort level ,x x1 2

which is denoted by ( ).  Player 1's reaction function is then ( ), the implicit form ofx x x x x1 2 1 1 2œ  

which is given in equation (C3).

 Similarly, the implicit form of player 2's reaction function, ( ), is x x x2 2 1œ

  4( )   (2 )   0. (C4)5 5 5 51 1 2 2 1 1 2 2
3 2 2

2x x w x x   œ

 Using the reaction functions for players 1 and 2, or rather equations (C3) and (C4), we 

obtain the equilibrium effort levels of players 1 and 2,  and , in the 12  sequential-movex x L12 12
1 2

L L

subgame.

 Substituting  and  into ( , ) in (C1), we obtain player 3's equilibrium effortx x x x x12 12
1 2 3 1 2

L L

level .  Substituting into (2) the players' equilibrium effort levels, we obtain player 'sx h12
3

L

equilibrium expected payoff , for . h N112L
h −

 Similarly, we obtain the players' equilibrium effort levels and their equilibrium expected

payoffs in the 13  and the 23L sequential-move subgame.L
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Lemma C.  Assume that Assumption  holds i Assuming that w w w w we obtain1 .  ( )  1.5 , 1 2 1 2 

the following in a unique equilibrium of the L sequential-move subgame a The players'12  .  ( ) 

(positive) effort levels are: x w w w w w w x w w12 2 2 3 12 2 2
1 1 2 2 1 21 2 1 1 2

L Lœ  Î  œ9 (2 ) 4 ( ) , 95

(2 ) 4 ( ) , 3 (2 2 3 ) 4( ) .  ( ) w w w w and x w w w w w w w w b The2 1 2 1 2 1 2 1 2 1 2 1 2
3 12 2

3 Î  œ   Î 5 L

players' expected payoffs are: w w w w w w w w w1 5 112 2 2 3 12 2
1 1 2 22 1 2 1 1 2 1 2

L Lœ 3 (2 ) 4 ( ) , 3 (2 Î  œ 

w w w and w w w w w w1 2 1 2 1 2 1 2 1 2
2 3 12 2 2

3) 4 ( ) , (2 2  3 ) 4( ) .Î  œ   Î 5 1 L

( )  2, 13  ii Assuming that w we obtain the following in a unique equilibrium of the L sequential-1 

move subgame a The players' (positive) effort levels are: x w w.  ( ) 9 (213 2
1 1 1

L œ

 Î  œ   Î  œ 1) 4 ( 1) , 3 (2 2 3 ) 4 ( 1) , 9 (25 51 2 1 1 1 2 2 1 2 2 1
3 13 2 13 2

2 3 1w w x w w w w w w w and x wL L

w w w b The players' expected payoffs are: w w w w1 2 1 1 1 2 1
3 13 2 2

1 1) 4 ( 1) .  ( )  3 (2 1) 4 (Î  œ  Î 1 5L

1) , (2 2 3 ) 4 ( 1) , 3 (2 )  4 ( 1) .3 13 2 2 13 2 3
2 31 2 2 1 2 2 1 1 1 2 11 5 1L Lœ   Î  œ  Î w w w w w w and w w w w

( )  2, 23iii Assuming that w we obtain the following in a unique equilibrium of the L2 

sequential-move subgame a The players' (positive) effort levels are: x.  ( ) 23
1

L œ

3 (2 2 3 ) 4 ( 1) , 9  (2 1) 4 ( 1) , w w w w w w w x w w w w and x2 1 2 1 2 1 1 2 2 2 1 2
2 23 2 3 23

2 32  Î  œ  Î  œ5 5L L

9 (2 ) 4 ( 1) .  ( ) (2 2w w w w b The players' expected payoffs are: w w w2 3 23
2 2 1 2 1 2 11 Î   1 L œ

3 ) 4 ( 1) , 3 (2 1) 4 ( 1) , 3 (2 ) 4w w w w w w w and w w w2 1 1 2 2 2 1 2 2 2 1
2 2 23 2 2 3 23 2

2 32Î  œ  Î  œ  Î5 1 5 1L L

( 1) .w2
3

Appendix D: Endogenous timing in a two-player contest

 In this appendix, we consider endogenous timing of effort exertion in a two-player

contest in which player , for 1 or 2, and player 3 compete to win a prize.  Specifically, weh h œ

consider the following game.  In the first stage, each player chooses independently between

Point 1 Point 2 and .  The players announce (and commit to) their choices simultaneously.  In the

second stage, after knowing when the players choose their effort levels, each player

independently chooses her effort level at the point in time which she announced in the first stage.

A player who chooses her effort level at point 2 observes the effort levels chosen at point 1

before she does.  At the end of this stage, the winner is determined.
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 Let , for , 3, denote player 's effort level.  We assume the following contesty j h jj œ

success function for player :j

  p  .j œ  5 5j j h h h

h

y y y        y y
y y

Î   
Î  œ

( ) for  0
1 2                         for  0

3 3

3

 Let denote the expected payoff for player .  Then the payoff function for player  is<j j j

given by

     .<j j j jœ  œv p  y   w y y y  y       y y
v y y

j j h h j h

j h

Î   
Î  œ

( ) for  0
2                                for  0

5 3 3

3



 To obtain a subgame-perfect equilibrium of the game, we work backward.  We first

analyze the subgames starting at the second stage, and then consider the players' first-stage

decisions on timing of effort exertion.

 There are four subgames starting at the second stage, but we need to analyze the

following three subgames: a simultaneous-move subgame, the  sequential-move subgame, andhL

the 3  sequential-move subgame (see footnote 9).  Conducting an analysis similar to the one inL

Section 3, we obtain the players' equilibrium expected payoffs in the three subgames.  Let <S
j

represent player 's equilibrium expected payoff in a simultaneous-move subgame.  Let j <hL
j

represent player 's equilibrium expected payoff in the  sequential-move subgame, and let j  hL <3L
j

represent her equilibrium expected payoff in the 3  sequential-move subgame.  Lemma D below L

reports these expected payoffs, and compares them.  Note that, in addition to Assumption 1, we

further assume that 2, which makes both players active in the equilibrium of every second-wh 

stage subgame.

Lemma D.  i  Under Assumption and the assumption that w we obtain:( )  1 1 2, Ÿ h

< " < < " < <S S hL hL L
h h h h h h h hh h hœ  w w w w w w2 2 2 2 3

3 3Î œ Î œ Î œ  Î œ ( 1) , 1 ( 1) , 4, (2 ) 4, (2

1) 4 , 1 4 .  ( )  1 2, , ,2 3 3
3 3 33 3Î œ Î    5 < < < < <h h h h
L S hL L Sw and w ii  If w then we obtain that  
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< < < < < < <3 3
3 3 3

L S hL S S hL L
h hh h h  œ œ œ, .  ( )  1,  and iii  If w then we obtain that and

< < <S hL L
h h hœ œ 3 .

 Now we consider the players' first-stage decisions.  We restrict our analysis to cases

where 1 2.  Part ( ) of Lemma D implies that, in the asymmetric contest,  leads w ii Point 1h

to a higher second-stage equilibrium expected payoff for player 3 than does , no matterPoint 2

what player  announces in the first stage.  This in turn implies that player 3 announces h Point 1

in the first stage.  Next, it is immediate from part ( ) that player  announces in the firstii h Point 2 

stage, forming her belief that player 3 announces .Point 1

Appendix E: Endogenous timing in an -player contestn

 In this appendix, we consider endogenous timing of effort exertion in an -player contest,n

where 3.  Specifically, we consider the following game.  In the first stage, the players eachn 

choose independently between  and , and announce their choices simultaneously.Point 1 Point 2

In the second stage, after knowing when the players choose their effort levels, each player

independently chooses her effort level at the point in time which she announced in the first stage.

A player who chooses her effort level at point 2 observes the effort levels chosen at point 1

before she does.

 To obtain a subgame-perfect equilibrium of the game, we work backward.  We first

analyze the proper subgames that start at the second stage, and then look at the players' first-

stage decisions on timing of effort exertion.

 Due to computational intractability, we aim to merely find a subgame-perfect

equilibrium, without checking its possible , in which each of the  players announcesuniqueness n

Point 1 n.  Accordingly, we need to analyze only 1 subgames among the 2  ones (starting at the n

second stage): a simultaneous-move subgame and the ( )  sequential-move subgame, for eachi L

i N i L i− , where ( )  is used as a shorthand for "with all players except player  as the leaders."
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A simultaneous-move subgame

 Player , for , seeks to maximize  over her effort level , taking the otheri i N x−  1i i

players' effort levels as given, where .  From the first-order condition for1i i i iœ w x X xÎ

maximizing , we derive player 's reaction function:1i i

 xi  œ

 
 

  ( )            for  0

0                                               for  

   


w x x x w

x

i z z z z i z z i
z i z i z i

z i
z z

Á Á Á

Á

5 5 5

5

 Î 5 Ÿ

wi

.

 Let , for , represent player 's effort level at the Nash equilibrium, and letx i N iS
i − 

X x iS S
n

z
z zœ 

œ1
5 .  Then they satisfy player 's reaction function, so that we have

  ( )       for each . (E1)X w  X x i NS S S
i i i

2Î œ  −5 

Adding these equations together, we have

  { (1 )}( )  .n

z
z

S S S

œ1

2Î œw X  nX X

This yields

   ( 1) (1 ).X  n wS
n

z
zœ  ÎÎ

œ1

Substituting this expression for  into (E1), we obtain the equilibrium effort levels of the X nS

active players:

 x  n w w n w w i NS
i i z i i z

n n

z z
œ  Î   Î ( 1){ (1 ) 1} { (1 )}      for . (E2) 

œ œ



1 1

2Î −5

 Next, substituting the players' equilibrium effort levels in (E2) into their payoff functions,

we obtain their expected payoffs at the Nash equilibrium:
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   w w n w w i N1 5S
i i z i i z

n n

z z
œ Î −{ (1 ) 1} { (1 )}      for . (E3) 

œ œ



1 1

2 2Î   Î

The i L sequential-move subgame( )

 Fix player , for .  In this subgame, all the players except player  first choose theiri i N i− 

effort levels simultaneously and independently at point 1, and then after observing their effort

levels, player  chooses her effort level at point 2.  To solve for an equilibrium of this subgame,i

we work backward.

 At point 2, knowing the list of the other players' effort levels, player  seeks toxi i

maximize  over her effort level .  From the first-order condition for maximizing , we derive1 1i i ix

player 's strategy in any equilibrium:i

 xi( )  .xi œ

 
 

  ( )        for  0

0                                           for  

   


w x x x w

x w

i z z z z i z z i
z i z i z i

z i
z z i

Á Á Á

Á

5 5 5

5

 Î 5 Ÿ


(E4)

 Next, consider point 1 at which the 1 leaders choose their effort levels simultaneouslyn  

and independently.  Let ( ), for { }, be player 's expected payoff computed at1j xi j N i j− Ï 

point 1 of the subgame which takes into account player 's equilibrium strategy in (E4). i

Substituting ( ) in (E4) into player 's payoff function, we obtainx ji xi

  ( )   .1j j j i z z j
z i

xi œ w x w x  xÎ 
Á

5

 At point 1, player , for { }, seeks to maximize ( ) over her effort level ,j j N i x− Ï 1j jxi

taking the other leaders' effort levels as given.  The first-order condition for maximizing ( ) 1j xi

reduces to

  (2 )   4 , (E5)w Q x w Qj j j i
2 2 3 5 œ
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where .Q x´ 
z i

z z
Á

5

 The leaders' equilibrium effort levels satisfy the 1 first-order conditions in (E5)n

simultaneously.  In order to obtain these 1 equilibrium effort levels, we take the followingn

four steps.

 Step h k N i w Q x w Q 1.  Using (E5), we have for any , { }: (2 ) 4  and− Ï 
h h h i
2 2 35 œ

w Q x w Qk k k i
2 2 3(2 ) 4 .  These two equations yield 5 œ

  (2 )  (2 ). (E6)w Q x w Q xh h h k k k 5 5œ

 Step k k N i h N i 2.  Fix player , for { }.  Using (E6), we have for each { }:− Ï − Ï 

(2 ) (2 ) .  Then, adding these 1 equations together, we obtainQ x w Q x w n 5 5h h k k k hœ Î 

  (2 3)  { (1 )} (2 ). (E7)n Q w w Q x œ Î
z i

z k k k
Á

 5

 Step j N i n Q w w Q x 3.  Using (E7), we have for { }: (2 3) { (1 )} (2 ).− Ï   œ Î
z i

z j j j
Á

5

Squaring both sides of this equation and rearranging the terms, we obtain

  (2 )   (2 3) { (1 )} .w Q x n Q wj j j z
z i

2 2 2 2 2 5 œ  Î Î
Á

Next, substituting this equation into (E5), we obtain

  (2 3) { (1 )}   4 ,n Q w w Q Î Î œ2 2 2 3
z i

z i
Á

which yields

    (2 3) 4 { (1 )} . (E8)Q n w wœ  Î Î2 2
i z

z i


Á
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 Step x j N i j 4.  Let , for { }, represent player 's effort level in the equilibrium.( )i L
j − Ï

Substituting (E8) into (E5) and doing some algebra, we obtain

  (2 3) {2 (1 ) 2 3} 4 { (1 )} . (E9)x  n w w n w w w( ) 2 3

Á Á

i L
j j z j i j z

z i z i
œ  Î   Î Î 5

 Next, substituting (E9) into ( ) in (E4), we obtain player 's effort level   in thex i xi
i L

ixi
( )

equilibrium:

 x n w w n w w( ) 2

Á Á

i L
i i z i i z

z i z i
  (2 3){2 (1 ) 2 3} 4 { (1 )} . (E10)œ  Î   Î Î 5

 Finally, substituting the players' equilibrium effort levels in (E9) and (E10) into player 'si

payoff function, we obtain player 's expected payoff  in the equilibrium:i  1( )i L
i

    {2 (1 ) 2 3} 4 { (1 )} . (E11)1( ) 2 2

Á Á

i L
i i z i i z

z i z i
œ w w n w w Î   Î Î5

The active-players-in-equilibrium conditions

 Using (E2), it is straightforward to check that, under Assumption 3, all the players are

active at the Nash equilibrium of a simultaneous-move subgame if and only if the following

condition is satisfied:

  (1 ) 1  0. (E12)w w nn z

n

z


œ1

Î   

 Next, using (E9) and (E10), it is straightforward to check that, under Assumption 3, all

the players are active in the equilibrium of the ( )  sequential-move subgame, for a fixedi L

i N− , if and only if the following condition is satisfied:

  2 (1 ) 2 3  0.w w nn z
z i


Á

Î   

This indicates that, under Assumption 3, all the players are active in the equilibrium of the ( )i L

sequential-move subgame, for all , if and only if the following condition is satisfied:i N− 
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  2 (1 ) 2 3  0. (E13)w w nn z
z n


Á

Î   

 Now, note that satisfying (E13) implies satisfying (E12).  (Recall from Assumption 3 that

wn œ 1.)  We can rewrite (E13) as

  2 (1 ) 2 1  0n

z
z

œ1
Î   w n

or, equivalently,

  w nn

z
z

œ1
(1 )  0.5.Î  

 Therefore, under Assumption 3, all the players are active in the equilibrium of each of

those 1 subgames if and only ifn

  w nn

z
z

œ1
(1 )  0.5. (E14)Î  

Players' first-stage decisions

 We look at the players' decisions, in the first stage, on when to expend their effort.  As

mentioned above, we aim to merely find a subgame-perfect equilibrium in which each of the n

players announces .  To this end, it suffices to show that  in (E3)  in (E11), forPoint 1 1S
i

i L
i  1( )

all .  Indeed, in such a case, a subgame-perfect equilibrium occurs in which no player hasi N− 

an incentive to deviate from her first-stage action, .Point 1

 Using (E3) and (E11), we obtain under Assumption 3 that  for a fixed 1S
i

i L
i  1( ) i N− 

if the following condition is satisfied:

  w w  ni z

n

z


œ1

(1 )  2( 1)  0.Î   Ÿ

Accordingly, we obtain under Assumption 3 that  for all if the following1S
i

i L
i  1( ) i N  − 

condition is satisfied:
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  (1 )  2( 1)  0w w  n1
1

n

z
z

œ

Î   Ÿ

or, equivalently,

  (1 )  2( 1) . (E15)n

z
z

œ1
1Î Ÿ  Îw n w

 We now end this appendix by stating the result we have obtained: If we assume

Assumption 3, (E14) and (E15), then a subgame-perfect equilibrium occurs in which each of the

n Point 1 players announces .  Note that (E14) and (E15) can be combined and rewritten as

  n w n w  Î Ÿ  Î0.5  (1 )  2( 1) .n

z
z

œ1
1
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TABLE 1

Comparison of the Total Effort Levels Obtained under Different Timing Assumptions

When 1" 5 " 51 1 2 2œ œ

            

   Highest Effort Level  Lowest Effort Level   

5 5 5 51 2 3 1
3 1 2 12œ  œ œ   Î    if  17 5X     X X XL L L L

         if  1 17 5X S  Ÿ Î51

5 5 51 2 3
1 2 3œ œ œ œ  X X X   XL L L S

   œ œ œX X X12 13 23L L L

5 5 5i j
L iL  Ÿ3

3    if  0X     X G

         if  0X GS  

5 5 5 5i j i
L jL j L iL œ œ œ  3

3 3  if  2.2X X X   X   

       if  1 2.2X   S
i Ÿ5

5 5 5i j
jL iL  Ÿ3     if  0X     X G

         if  0X GS  

5 5 5 53 1 2 1
1 2 12 3 œ œ œ  Ÿ Î    if  0 5 11X X X   XL L L L

         if  5 11 1X S Î Ÿ 51

5 5 53
3  Ÿi j

jL L    if  0X     X H

         if  0X HS  

5 5 5 53
3 3œ  œ œ  Ÿ Îi j j

jL L iL i L  if  0 5 17X     X X X   

       if  5 17 1X   S
jÎ Ÿ 5

            

Notes: i  j i j G H Let , 1, 2 with .  Let 22 5 5 , and let 5 5œ ´   ´  Á 5 5 5 5 5 5j i 1 2 2 1

 œ22 .  Recall that 1.5 5 51 2 3



 

Panel A. The players’ expected payoffs with player 3 announcing Point 1 

 

 

 

Panel B. The players’ expected payoffs with player 3 announcing Point 2 

 

 

 

 

Figure 1. The Strategic Interaction among the Players in the First Stage 



 

 

 

 
 

 

 

 

 

 

 
Figure 2. The Values of the Parameters 

at Which All Three Players Are Always Active in Equilibrium 
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