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Abstract
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1.  Introduction

 Contests between groups for a group-specific public-good/bad prize are common.  For

example, consider a situation in which cities and towns compete to be selected as a location for

housing development by a private developer or a local government.  In this contest, some

residents in the selected city or town will benefit from the housing development, and others in

the selected city or town will be harmed by it, whereas the residents in the other (losing) cities

and towns will neither benefit from, nor be harmed by, the housing development.  This means

that the housing development can be viewed as a group-specific public-good/bad prize.  No

doubt, residents in each city or town expend effort or make contributions to win the prize or to

hinder their city or town from winning it (or both).

 The purpose of this paper is to study such contests.  Specifically, we study contests

between groups for a group-specific public-good/bad prize in which the contest success function

for a group can be represented by a  function in each group's effort level, where eachcontinuous

group's effort level equals the  of effort levels that the individual players in that groupsum

expend.

 Formally, we consider contests in which two groups compete with each other to win a

group-specific public-good/bad prize, every player's valuation for the prize is publicly known,

and every player has a  marginal cost of increasing effort.  The individual players inconstant

each group expend their effort to win the prize or to hinder their group from winning it or

rather to help the other group win the prize or both.  All the players in both groups choose

their effort levels simultaneously and independently.  In particular, this paper focuses on

examining who expends positive effort, how much effort each player expends, how severe the

free-rider problem is, and what factors determine the players' effort levels.

 Obtaining the pure-strategy Nash equilibrium, we establish that, in each group, only the

player with the highest valuation and the player with the lowest valuation (that is negative) may

be active that is, they may expend positive effort.  We further establish that there are only two

active players, either in the same group or in different groups, and the rest expend zero effort.
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There are four different cases: the case where only the highest-valuation player in each group is

active, the two cases where only the highest-valuation player and the lowest-valuation player in

the same group are active, and the case where only the lowest-valuation player in each group is

active.  These results basically come from the fact that a player with a higher [lower] valuation,

when valuations are positive [negative], obtains a greater marginal gross payoff from increasing

effort, while all the players incur the same marginal cost that is constant at unity.

 Many papers study contests with a group-specific public-good prize: See, for example,

Katz et al. (1990), Baik (1993, 2008), Baik and Shogren (1998), Baik et al. (2001), Epstein and

Mealem (2009), Lee (2012), Kolmar and Rommeswinkel (2013), Chowdhury et al. (2013),

Topolyan (2014), Barbieri et al. (2014), Chowdhury and Topolyan (2016), Barbieri and Malueg

(2016), and Dasgupta and Neogi (2018).  The most important difference of this paper from those

papers is that, in this paper, the prize is a public good for some players and a public bad for

others in the winning group, whereas, in those papers, the prize is a public good for all the

players in the winning group.

2.  The model

 Consider a contest in which there are two groups, 1 and 2, that compete over a prize.

Group 1 consists of risk-neutral players, where 1, and group 2 consists of risk-neutral m m  n  

players, where 1.  The prize is a group-specific public-good/bad one that is, it is a publicn   

good for some players and a public bad for others in the winning group, but it provides neither

benefit nor harm to the players in the losing group.  Players in each group expend effort or make

contributions simultaneously and independently to win the prize or  to win it (or both).not

 Let , for 1, 2, represent the set of players in group .  Then we have that {1, .M i i Mi œ ´1

. . , } and {1, . . . , }.  Let , for , represent the valuation for the prize of playerm M n v k M2 ´ ik i−

k i v  in group , where  is positive or negative.  Each player's valuation for the prize is publiclyik

known at the start of the game.
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Assumption 1.  ( )   1, 2,  a We assume that v v  . . . v v for i where z m fori i iz iz1 2 1      œ œ

i and z n for i b We assume that v v and v vœ œ œ  1    2.  ( )  0  0.11 1 21 2m n

 Part ( ) of Assumption 1 indicates that the prize is a public good for some players and ab

public bad for others in each group.  It eliminates from consideration less interesting cases, such

as a case where all the players in either group have negative valuations for the prize.

 Let , for 1, 2 and , represent the effort level expended by player in group x i k M k iik iœ −

to win the prize, where 0.  Let  represent the effort level expended by player in group x y k iik ik 

not y to win the prize, where 0.  This is the effort level expended to hinder his own groupik  

from winning the prize and help the other group win the prize.  It may include the effort

expended in sabotage activities which harm his own group and benefit the other group (see, for

example, Konrad, 2000; Chowdhury and Gurtler, 2015).  Let  and , where.. X x Y yi ik i ik

z z

k= k=
´ ´ 

1 1

z m i z n iœ œ œ œ for 1 and  for 2.  The effort expended by each player is irreversible.

 Let , for 1, 2, represent the probability that group wins the prize, wherep i i i œ

0 1 and 1.  We assume the following contest success function for group :Ÿ Ÿ œp p p ii 1 2

  ( , ),p   p X Y X Yi iœ 1 2 2 1 ) )

where 0 and the function  has the properties specified in Assumption 2 below.  The)  pi

parameter  reflects the relative effectiveness of effort that is expended by players in one group)

to help the other group win the prize.  This contest success function says that group 'si

probability of winning the prize depends on the effort levels expended by both groups  top  noti

win the prize as well as the effort levels expended by both groups to win the prize.

Assumption 2.  ( )  0, 0, 0, 0,a We assume that p X p Y p X  p Y` `i i i j i ii jÎ`   Î`   ` Î` Ÿ ` Î` Ÿ2 2 2 2

` ` œp X p Y p X  and p Y for i  j with i ji j i i i ij iÎ` Ÿ Î` Ÿ ` Î`   ` Î`   Á0, 0, 0, 0,  , 1, 2  .2 2 2 2
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( )  0, 0, 0, 0, b We further assume that p X p Y p X and p Y when`  ` i i i j i ii jÎ` Î` ` Î`  ` Î` 2 2 2 2

X Y  and p X p Y p X  and p Y whenj i i j i i i ij i Î` Î` ` Î` ` Î` `  `   0; 0, 0, 0, 0, 2 2 2 2

X Yi j  0.

 Assumption 2 says that, , group 's probability of winning is increasing inceteris paribus i

its own effort level at a decreasing rate; however, it is decreasing in the other group's effortX  i

level at a decreasing rate, for , 1, 2 with .  It says also that, , group 'sX  i  j i j ceteris paribus ij œ Á

probability of winning is increasing in the other group's effort level  at a decreasing rate;Yj

however, it is decreasing in its own effort level at a decreasing rate.Y  i

 A specific form of the function  is: ( ) if 0, and 1 2 if  0,p p X Y S S p Si i i j iœ Î œ  Î œ)

where .  This simplest logit-form contest success function isS X Y X Y´  1 2 2 1 ) )

extensively used in the literature on the theory of contests.

 Let , for 1, 2 and , represent the expected payoff for player in group .1ik ii k M k iœ −

Then the payoff function for player in group  isk i

    v  p X Y X Y   x   y1ik ik i ik ikœ   ( , ) . (1)1 2 2 1 ) )

 We formally consider the following simultaneous-move game.  At the beginning of the

game, every player knows the sizes of the two groups and the players' valuations for the prize.

Next, all the players in both groups choose their effort levels simultaneously and

independently that is, when player in group , for 1, 2 and , chooses his effort œk i i k M− i

levels,  and , he does not know the other players' effort levels.  Finally, the winning group isx yik ik

determined at the end of the game.

 We assume that all of the above is common knowledge among the players.  We employ

Nash equilibrium as the solution concept.
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3.  Active players and free riders in equilibrium

 We begin by showing that, in equilibrium, each player with a positive valuation expends

zero effort to help the other group win the prize, while each player with a negative valuation

expends zero effort to help his own group win it.  Let , for 1, 2, represent the set ofM i
i œ

players in group  who have positive valuations.  Let , for 1, 2, represent the set ofi M i
i œ

players in group who have negative valuations.  By Assumption 1, neither set is empty.  Let thei 

superscript * represent the equilibrium values of effort levels.

Lemma 1.  In equilibrium  we have for i : a y for k M and b x for,  1, 2 ( ) 0  , ( ) 0 œ œ œ* *
ik ihi− 

h M .− 
i

 The proof of Lemma 1 is straightforward, and therefore omitted.  Lemma 1 is intuitively

natural.  Each player in  has a positive valuation for the prize.  This implies that, if his ownM
i

group wins the prize, he gets a positive benefit from it; otherwise, he gets nothing.  Accordingly,

he wants his group to win the prize, and thus he does not help the other group win the prize.  By

contrast, each player in  has a negative valuation for the prize.  This implies that, if his ownM
i

group wins the prize, he suffers a harm from it; otherwise, he suffers no harm.  Accordingly, he

wants the other group to win the prize, and thus he does not help his own group win the prize.

 Based on Lemma 1, in order to obtain the pure-strategy Nash equilibrium of the game,

we will henceforth restrict attention only to the strategy profiles at which, for 1, 2, 0i yœ œik

for  and 0 for k M x h M .− − 
i ih iœ

3.1.  Four possible active players in equilibrium

 k k MConsider player  in group 1, for , whose valuation for the prize is positive, and− 
1

player  in group 2, for , whose valuation for the prize is negative.  These players wanth h M− 
2

group 1 to win the prize.  We show that, in equilibrium, only player 1 in  and player  in M n M 
1 2

may be active.
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 Player , for , seeks to maximize his expected payoffk k M− 
1

    v  p X Y X Y   x11 1 1 1 2 2 1 1k k kœ  ( , ) (2) ) )

over his effort level, 0, given effort levels of all the other players.  Note that, based onx1k  

Lemma 1, we set 0 in expression (2).  Let  represent the best response of player in y x k M1 1 1k
b

kœ 

to a list of the other players' effort levels.  Then, it satisfies the first-order condition:

` œ  œ   œ 11 1 1 1 1 1 1 1 2 1k k k k k
b

kÎ` ` Î` ` Î`x v p x v p X Y x( ) 1 { ( )} 1 0   for  0)

or (3)

` œ  œ   Ÿ11 1 1 1 1 1 1 1 2 1k k k k k
b

kÎ` ` Î` ` Î` œx v p x v p X Y x( ) 1 { ( )} 1 0   for  0.)

Under Assumption 2, the payoff function, , is strictly concave in the effort level, , which11 1k k x

implies that the second-order condition for maximizing is satisfied and is unique.11 1k
b

k x  

 Player , for , seeks to maximize his expected payoffh h M− 
2

    v  p X Y X Y   y12 2 2 1 2 2 1 2h h hœ  ( , ) ) )

          v p X Y X Y   yœ  2 1 1 2 2 1 2h h{1 ( , )}  ) )

over his effort level, 0, given effort levels of all the other players.   Let  represent they y2 2h
b

h 

best response of player in  to a list of the other players' effort levels.  Then, it satisfies theh M
2

first-order condition:

` œ  œ    œ 12 2 2 2 2 2 1 1 2 2h h h h h
b

hÎ` ` Î` ` Î`y v p y v p X Y y( ) 1 { ( )} 1 0   for  0) )

or (4)

` œ  œ    Ÿ12 2 2 2 2 2 1 1 2 2h h h h h
b

hÎ` ` Î` ` Î` œy v p y v p X Y y( ) 1 { ( )} 1 0   for  0.) )

Under Assumption 2, the payoff function, , is strictly concave in the effort level, , which12 2h h y

implies that the second-order condition for maximizing is satisfied and is unique.12 2h
b

h y  

 Lemma 2, together with Lemma 1, shows that all players in {1} and all players inM
1 Ï

M n
2 Ï { } expend zero effort in equilibrium.
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Lemma 2.  In equilibrium  we have: a x for all k M and b y for all, ( ) 0 {1}, ( ) 0 * *
k h1 21œ œ− Ï

h M n .− Ï
2 { }

Proof.  ( ) Consider a Nash equilibrium, ( , , . . . , , , , , . . . , , ).  Supposea x y x  y x y x  y* * * * * * * *
m m n n11 11 1 1 21 21 2 2

on the contrary that 0 for some {1}.  Then, from expression (3), we have thatx k M*
k1 1 − Ï

v p X Y v v1 1 1 2 11 1k k{ ( )} 1 0.  This, together with 0, yields that` Î`   œ )

` œ   111 11 11 1 1 2Î` ` Î`x v p X Y{ ( )} 1 0, which implies that player 1 in group 1 has an)

incentive to increase his effort level in the Nash equilibrium.  This contradicts the assumptionx  11

that  is his equilibrium effort level.x*
11

( ) Consider a Nash equilibrium, ( , , . . . , , , , , . . . , , ).  Suppose on theb x y x  y x y x  y* * * * * * * *
m m n n11 11 1 1 21 21 2 2

contrary that 0 for some { }.  Then, from expression (4), we have thaty h M n*
h2 2 − Ï

   œ  `) )v p X Y v v y2 1 1 2 2 2 2 2h h n n n{ ( )} 1 0.  This, together with 0 , yields that ` Î`  Î`1

œ    ) )v p X Y n2 1 1 2n{ ( )} 1 0, which implies that player  in group 2 has an incentive` Î`

to increase his effort level  in the Nash equilibrium.  This contradicts the assumption that y y2 2n
*

n

is his equilibrium effort level. 

 In part ( ) of Lemma 2, every player in {1} expends zero effort for the prize ina M
1 Ï

equilibrium because his marginal gross payoff is less than his marginal cost at the equilibrium

total effort level in other words, because he expects the equilibrium total effort level to be

large enough from his perspective.  Similarly, in part ( ) of Lemma 2, every player in { }b M n
2 Ï

expends zero effort for the prize in equilibrium because his marginal gross payoff is less than his

marginal cost at the equilibrium total effort level.

 Lemma 2 implies that only player 1 in  and player  in  may be active inM n M 
1 2

equilibrium.

 Next, consider player  in group 2, for , whose valuation for the prize is positive,k k M− 
2

and player  in group 1, for , whose valuation for the prize is negative.  These playersh h M− 
1
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want group 2 to win the prize.  We show that, in equilibrium, only player 1 in  and player M m
2

in  may be active.M
1

 Player , for , seeks to maximize his expected payoffk k M− 
2

    v  p X Y X Y   x12 2 2 1 2 2 1 2k k kœ  ( , ) ) )

over his effort level, 0, given effort levels of all the other players.  Let  represent thex x2 2k
b

k 

best response of player in  to a list of the other players' effort levels.  Then, it satisfies thek M
2

first-order condition:

` œ  œ   œ 12 2 2 2 2 2 2 2 1 2k k k k k
b

kÎ` ` Î` ` Î`x v p x v p X Y x( ) 1 { ( )} 1 0   for  0)

or (5)

` œ  œ   Ÿ12 2 2 2 2 2 2 2 1 2k k k k k
b

kÎ` ` Î` ` Î` œx v p x v p X Y x( ) 1 { ( )} 1 0   for  0.)

Under Assumption 2, the payoff function, , is strictly concave in the effort level, , which12 2k k x

implies that the second-order condition for maximizing is satisfied and is unique.12 2k
b

k x  

 Player , for , seeks to maximize his expected payoffh h M− 
1

    v  p X Y X Y   y11 1 1 1 2 2 1 1h h hœ  ( , ) ) )

          v p X Y X Y   yœ  1 2 1 2 2 1 1h h{1 ( , )}  ) )

over his effort level, 0, given effort levels of all the other players.   Let  represent they y1 1h
b

h 

best response of player in  to a list of the other players' effort levels.  Then, it satisfies theh M
1

first-order condition:

` œ  œ    œ 11 1 1 1 1 1 2 2 1 1h h h h h
b

hÎ` ` Î` ` Î`y v p y v p X Y y( ) 1 { ( )} 1 0   for  0) )

or (6)

` œ  œ    Ÿ11 1 1 1 1 1 2 2 1 1h h h h h
b

hÎ` ` Î` ` Î` œy v p y v p X Y y( ) 1 { ( )} 1 0   for  0.) )

Under Assumption 2, the payoff function, , is strictly concave in the effort level, , which11 1h h y

implies that the second-order condition for maximizing is satisfied and is unique.11 1h
b

h y  
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 Lemma 3, together with Lemma 1, shows that all players in {1} and all players inM
2 Ï

M m
1 Ï { } expend zero effort in equilibrium.

Lemma 3.  In equilibrium  we have: a x for k M and b y for, ( ) 0  {1}, ( ) 0 * *
k h2 12œ œ− Ï

h M m .− Ï
1 { }

 The proof and explanation of Lemma 3 are similar to those of Lemma 2, and therefore

omitted.

 Based on Lemmas 1, 2, and 3, we conclude that, in equilibrium, only players 1 and  inm

group 1 and players 1 and  in group 2 may expend positive effort and the rest expend zeron

effort.

3.2.  Two active players in equilibrium

 We assume, for simplicity, that | and |.  In this case, we first showv |v v |v11 2 21 1Á Á) )n m

that two among the four possible active players are actually inactive in equilibrium.

Lemma 4.  In equilibrium  we have: a y y v |v and v |v b, ( ) 0 if |  |, ( )* *
n m n m2 1 11 2 21 1œ œ  ) )

y x v |v and v |v c x y v |v and v |v* * * *
n mn m n m2 21 11 111 2 21 1 11 2 21 1œ œ   œ œ  0 if |  |, ( ) 0 if |  |,) ) ) )

and d x x v |v and v |v( ) 0 if |  |.* *
n m11 21 11 2 21 1œ œ  ) )

Proof.  ( ) Consider a Nash equilibrium, ( , , . . . , , , , , . . . , , ).  Supposea x y x  y x y x  y* * * * * * * *
m m n n11 11 1 1 21 21 2 2

on the contrary that 0.  Then, from expression (4), we have that { (y v p X*
n n2 2 1 1  ) ` Î`

) ) )Y v |v x v p X Y2 11 2 11 11 11 1 1 2)} 1 0.  This, together with |, yields that { ( )} œ ` œ  Î` ` Î`n 1

 1 0 (see expression (3)), which implies that player 1 in group 1 has an incentive to increase

his effort level in the Nash equilibrium.  This contradicts the assumption that  is hisx  x11 11
*

equilibrium effort level.
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 Next, consider a Nash equilibrium, ( , , . . . , , , , , . . . , , ).x y x  y x y x  y* * * * * * * *
m m n n11 11 1 1 21 21 2 2

Suppose on the contrary that 0.  Then, from expression (6), we have that {y v p*
m m1 1 2  ) ` Î

` Î` ` Î`( )} 1 0.  This, together with |, yields that { (X Y v |v x v p X2 1 21 1 21 21 21 2 2  œ  ` œ) ) m 1

  )Y1)} 1 0 (see expression (5)), which implies that player 1 in group 2 has an incentive to

increase his effort level in the Nash equilibrium.  This contradicts the assumption that  isx  x21 21
*

his equilibrium effort level.

 The proof of parts ( ), ( ), and ( ) is similar to that of part ( ), and therefore omitted.b c d a 

 Based on Lemmas 1 through 4, we conclude that, in equilibrium, there are only two

active players and the rest free ride.

3.3.  The pure-strategy Nash equilibrium of the game

 Now we obtain the pure-strategy Nash equilibrium of the game.  At the Nash

equilibrium, denoted by ( , , . . . , , , , , . . . , , ), each player's pair of effortx y x  y x y x  y* * * * * * * *
m m n n11 11 1 1 21 21 2 2

levels, one expended to win the prize and the other expended  to win the prize, is the bestnot

response to the other players' pairs of effort levels.  Using Lemmas 1 through 4, we obtain the

following proposition.

Proposition 1.  There are four different cases to consider depending on the values of v v, , ,11 1m

v v and the parameter   The following strategy profile in each case constitutes the Nash21 2, ,  .n )

equilibrium of the game.

( )  |  |,  ,a If v |v and v |v the players play the following strategies: x x11 2 21 1 11 11  œ) )n m
* b

x x x for i and j M and y for i and j M In this case* b * *
ij iji i21 21œ œ œ œ œ, 0 1, 2  {1},  0 1, 2  .  ,− Ï −

we have: X x X x and Y Y , ,  0.* b * b * *
1 2 1 211 21œ œ œ œ

( )  |  |,  ,b If v |v and v |v the players use the following strategies: x x11 2 21 1 11 11  œ) )n m
* b

y y x for j M y for j M m and x y for j M In* b * * * *
m j j j jm1 1 1 2 21 1 1 2œ œ œ œ œ, 0 {1}, 0 { },  0 .  − Ï − Ï −

this case we have: X x Y y and X Y, , ,  0.* b * b * *
m1 1 2 211 1œ œ œ œ
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( )  |  |, , ,c If v |v and v |v the players use the following strategies: x x y y11 2 21 1 21 221 2  œ œ) )n m
* b * b

n n

x y for j M x for j M and y for j M n In this case we* * * *
j j j j1 1 2 21 2 2œ œ œ œ0 , 0 {1},  0 { }.  , − − Ï − Ï

have: X x Y y and X Y* b * b * *
n2 2 1 121 2œ œ œ œ, ,  0.

( )  |  |, ,d If v |v and v |v the players play the following strategies: y y11 2 21 1 1 1  œ) )n m
* b

m m

y y x for i and j M and y for i and j M z where z m* b * *
n ij ijn i i2 2œ œ œ œ œ œ, 0 1, 2  ,  0 1, 2  { }, − − Ï

for i and z n for i In this case we have: Y y Y y and X X 1    2.  , , , 0.œ œ œ œ œ œ œ* * * * * *
m n1 1 2 2 1 2

 In part ( ) of Proposition 1, only two players, player 1 in group 1 and player 1 in group 2,a

are active.  Each of the two active players has the highest valuation for the prize in his own

group, and expends his effort only to win the prize.  His effort expended to hinder his own group

from winning the prize is zero.  Hence, the equilibrium effort level of player 1 in group 1 isx  *
11

the best response to only the equilibrium effort level of player 1 in group 2, and vice versa.x  *
21

 In part ( ), only two players, players 1 and  in group 1, are active accordingly, allb m 

players in group 2 are inactive.  The first active player has the highest valuation for the prize in

group 1, and expends his effort only to win the prize.  The second active player has the lowest

valuation for the prize in group 1, and expends his effort only to hinder group 1 from winning the

prize that is, only to help group 2 win the prize.  Hence, the equilibrium effort level of x  *
11

player 1 in group 1 is the best response to only the equilibrium effort level of player  in they  m*
m1

same group, and vice versa.

 In part ( ), only two players, players 1 and  in group 2, are active accordingly, allc n 

players in group 1 are inactive.  The first active player has the highest valuation for the prize in

group 2, and expends his effort only to win the prize.  The second active player has the lowest

valuation for the prize in group 2, and expends his effort only to hinder group 2 from winning the

prize that is, only to help group 1 win the prize.  Hence, the equilibrium effort level of x  *
21

player 1 in group 2 is the best response to only the equilibrium effort level of player  in they  n*
n2

same group, and vice versa.
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 In part ( ), only two players, player  in group 1 and player  in group 2, are active.d m n

Each of the two active players has the lowest valuation for the prize in his own group, and

expends his effort only to hinder his own group from winning the prize that is, only to help the

other group win the prize.  His effort expended to win the prize is zero.  Hence, the equilibrium

effort level of player  in group 1 is the best response to only the equilibrium effort level y  m y* *
m n1 2

of player  in group 2, and vice versa.n

 Consider the housing development example introduced in Section 1.  Proposition 1

implies that there are only two people (or two "groups" of people) that expend effort or make

contributions to win the group-specific public-good/bad prize, and the rest free ride.  There are

four different cases: the case where only the highest-valuation resident (or group of residents) in

each city or town is active, the two cases where only the highest-valuation resident (or group of

residents) and the lowest-valuation resident (or group of residents) in the same city or town are

active, and the case where only the lowest-valuation resident (or group of residents) in each city

or town is active.

4.  Conclusions

 We believe that common are contests between groups for a group-specific public-

good/bad prize in which the contest success function for a group can be represented by a

continuous sum function in each group's effort level, where each group's effort level equals the  of

effort levels that the individual players in that group expend.  However, we also believe that

there are contests between groups for a group-specific public-good/bad prize in which the

contest success function for a group can be represented by the selection rule of all-pay auctions

or a difference-form contest success function.  In addition, we believe that there are contests

between groups for a group-specific public-good/bad prize in which a group's effort level equals

the minimum or maximum of effort levels that the individual players in that group expend.  It

would be interesting to study these contests.
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