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Abstract
We study a contest where there are two active players in equilibrium when
three players expend effort simultaneously to win a prize. We look at how
endogenous timing of effort exertion affects the players' behavior. The players
play the following game. First, they announce simultaneously whether they
each will expend effort in period 1 or in period 2. Then, after knowing when
they expend effort, each player expends effort in the period which he
announced. We find interesting results, focusing on the players' decisions on
when to expend effort, the identities of active players, and the effort levels in a
subgame‐perfect equilibrium.
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1 | INTRODUCTION

A well‐known result obtained from two‐player asymmetric contests with endogenous timing of effort exertion is that, in
equilibrium, the weak player—determined by the players' valuations for the prize and their relative abilities—expends
effort before the strong player (see e.g., Baik & Shogren, 1992; Leininger, 1993).1

Recently, Baik et al. (2022) have studied a three‐player contest with endogenous timing of effort exertion. In their
model, there are two periods, 1 and 2, in which the players can expend their effort to win a prize. The players play the
following game. First, the three players choose independently between Period 1 and Period 2, and announce their choices
simultaneously. Then, each player chooses his effort level in the period which he announced. The winner is determined at
the end of the game. Restricting their analysis to cases where all three players are active in the equilibrium of every
second‐stage subgame, they show that each of the players announces Period 1, and thus they all choose their effort levels
simultaneously in period 1. This result is in sharp contrast to the well‐known result obtained from two‐player asymmetric
contests with endogenous timing of effort exertion. One may say that, given “moderate” asymmetries among three
players, the presence of an additional player changes drastically the equilibrium timing of effort exertion.
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Now, an interesting question that arises is: What happens if asymmetries among three players are not moderate? In
this case, does the presence of an additional player change the equilibrium timing of effort exertion, compared with
two‐player asymmetric contests with endogenous timing of effort exertion? Who are active players in the equilibrium?
How much effort do the players expend?

To address these questions, we study a three‐player asymmetric contest with endogenous timing of effort exertion in
which asymmetries among three players are not moderate. More precisely, we study one in which there are only two
active players—that is, only two players expend positive effort—in equilibrium when the three players choose their
effort levels simultaneously.

One example of such a three‐player asymmetric contest may be a United States presidential election because it has
the following facts. First, there have often been three candidates: the nominee of the Democratic Party, the nominee of
the Republican Party, and a third party or independent candidate. Second, asymmetries among the candidates have
arisen because the candidates may have different valuations for winning the election, and may have different abilities to
get peoples' votes. Third, throughout the history of presidential elections, even a popular (or strong) third party or
independent candidate, such as Ross Perot in 1992, has been the weakest among the three candidates in the relevant
election year and relatively inactive. Fourth, given two periods, the early and the late period, the three presidential
candidates have first announced when they will run their major election campaigns, and then have actually run their
election campaigns according to their announced campaign schedules.

Another example may come from competition in presidential primaries and caucuses to be selected as a party's
nominee for president of the United States. It can be justified similarly to the above example.

Yet another example of the three‐player asymmetric contest studied in the current paper may arise in competition
among the United States vaccine makers to invent a COVID‐19 vaccine at the beginning of the COVID‐19 era because it
had the following facts. First, there were three forerunners of COVID‐19 vaccines: Pfizer, Moderna, and Johnson and
Johnson. Second, asymmetries among the vaccine makers existed because the vaccine makers had different valuations
for inventing a COVID‐19 vaccine, and had different abilities to invent it. Third, there was the weakest one among the
three vaccine makers, which was relatively behind the other two in terms of ability to invent a COVID‐19 vaccine.
Fourth, given two periods, the early and the late period, the three vaccine makers first announced (and committed to)
their research and development plans for a COVID‐19 vaccine, and then carried out their research and development
activities according to their announced plans.

We consider the following game, which is similar to the one in Baik et al. (2022). In the first stage, the three players
choose independently between Period 1 and Period 2, and announce their choices simultaneously. In the second (or
effort‐expending) stage, after knowing when the players expend effort, each player independently chooses his effort
level in the period which he announced. The winner is determined at the end of the game.

We first show that, given not significant asymmetries between the top two players and the weakest player, the game
has no subgame‐perfect equilibrium in pure strategies in which the weakest announces Period 1 in the first stage.
However, given significant asymmetries between them, the game has a subgame‐perfect equilibrium in which the
strongest player announces Period 2 in the first stage and chooses his effort level in period 2, while the other players
announce Period 1 in the first stage and choose their effort levels in period 1.

We also show that, given very significant asymmetries between the top two players and the weakest player, the game
has a subgame‐perfect equilibrium in which the strongest player and the weakest player announce Period 2 in the first
stage, while the other player announces Period 1 in the first stage.

Note that these results regarding the players' decisions on the timing of effort exertion is similar to the well‐known
result obtained from two‐player asymmetric contests with endogenous timing of effort exertion.

Next, we show that, in the equilibrium in which the strongest player announces Period 2 while the other players
announce Period 1, the weakest player is active if asymmetry between the second strongest player and the weakest
player is not very significant; however, he is inactive if asymmetry between them is very significant. We also show that,
in the equilibrium in which the strongest player and the weakest player announce Period 2 while the second strongest
player announces Period 1, the weakest player is inactive.

Finally, we show that, in any of the subgame‐perfect equilibria, the total effort level is lower—even when the
weakest player is active—compared with the corresponding three‐player simultaneous‐move contest.2

Contests with endogenous timing of effort exertion have been studied by many other researchers. Nitzan (1994),
Baik and Shogren (1994), Konrad and Leininger (2007), and Baik and Lee (2013) have studied contests in which players'
valuations for a prize are exogenously fixed and publicly known. Baik and Shogren (1994) consider an environmental
conflict between a citizens' group and a firm in which the citizens' group's legal expenses are reimbursed if the group
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wins, while the firm's expenses are not if the firm wins. They show that, if reimbursement is less than 50% of expenses,
both the citizens' group and the firm exert their effort simultaneously. Konrad and Leininger (2007) consider an n‐
player contest with all‐pay‐auction contest success functions, and show that the player with the lowest cost of effort
typically expends his effort late, while the rest expend their effort either early or late. Baik and Lee (2013) consider a
two‐player contest with delegation, and show that the delegate with low contingent compensation expends his effort
before the delegate with high contingent compensation.

Morgan (2003) and Fu (2006) have studied contests in which each player's valuation for a prize is drawn from a
probability distribution after the players announce when they will expend effort. Morgan (2003) considers a two‐player
contest with logit‐form contest success functions in which the realized valuations are revealed to both players. He shows
that the players expend effort sequentially. Fu (2006) considers a two‐player contest with logit‐form contest success
functions in which the realized common valuation is revealed to only one player. He shows that the uninformed player
expends effort before the informed player.

Hoffmann and Rota‐Graziosi (2012) have considered a two‐player contest with general contest success functions in
which players' common valuation for a prize is endogenously determined, depending only on their effort levels. They
show that in some cases the players expend effort sequentially, while in others they expend effort simultaneously.
Hoffmann and Rota‐Graziosi (2020) have studied two‐player endogenous‐timing games in which the payoff or the
marginal payoff of a player becomes non‐monotonic with respect to the strategy of the opponent. They propose a
taxonomy of the subgame‐perfect Nash equilibria.

The remainder of this paper proceeds as follows. In Section 2, we present a model of a three‐player asymmetric contest
with endogenous timing of effort exertion, and set up a noncooperative game. In Section 3, we examine whether one of the
weakest player's first‐stage actions strictly or weakly dominates the other of his first‐stage actions. In Sections 4 and 5, we
first obtain a subgame‐perfect equilibrium of the game in the case where the weakest player announces Period 1 in the
first stage. Then, we examine the identities of active players and the individual and total effort levels in the subgame‐
perfect equilibrium of the game. In Section 6, we obtain a subgame‐perfect equilibrium of the game in the case where
the weakest player announces Period 2 in the first stage. Finally, Section 7 offers our conclusions.

2 | THE MODEL

Consider a contest in which there are three players, 1 through 3, who compete to win a prize, and there are two periods,
1 and 2, in which the players can expend their effort. The players can each expend their effort either in period 1 or in
period 2, but not in both periods. The structure of strategic interactions between the players is as follows: The players
first decide independently and announce simultaneously whether they each will expend their effort in period 1 or in
period 2, and then each player independently chooses his effort level in the period which he announced.

Let vi, for i = 1, 2, 3, represent player i's valuation for the prize, where vi > 0. The players' valuations for the prize are
publicly known at the start of the game. Without loss of generality, let vi = βiv3, where βi > 0 and β3 = 1.

Let xi, for i = 1, 2, 3, represent player i's effort level, where xi ≥ 0. Let pi(x1, x2, x3) represent the probability that
player i wins the prize. We assume the following contest success function for player i:

piðx1; x2; x3Þ ¼ σixi=X for X > 0
1=3 for X ¼ 0; ð1Þ

where X = σ1x1 þ σ2x2 þ σ3x3, σi > 0, and σ3 = 1.3 The parameter σi reflects player i's relative ability to convert effort into
probability of winning. For example, given that xj = xk > 0, for j, k = 1, 2, 3 with j ≠ k, ceteris paribus, σj > σk implies that
player j's probability of winning is greater than player k's. In this case, we may say that player j has more ability than
player k. We assume that the parameter σi is publicly known at the start of the game.

Let si ≡ βiσi for i = 1, 2, 3. Then si reflects player i's relative “composite strength” in the contest. We assume in
Assumption 1 that player 1 is the strongest, and player 3 is the weakest, in terms of composite strength.

Assumption 1 We assume that s1 > s2 > s3 = 1.

We assume that the players are risk‐neutral. Let πi, for i = 1, 2, 3, represent the expected payoff for player i. Then the
payoff function for player i is
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πi ¼ vipiðx1; x2; x3Þ − xi: ð2Þ

We formally consider the following game. In the first stage, the three players each choose independently between
Period 1 and Period 2. They announce (and commit to) their choices simultaneously. In the second (or effort‐expending)
stage, after knowing when the players choose their effort levels, each player independently chooses his effort level in the
period which he announced in the first stage. We assume that a player, if any, who chooses his effort level in period 2
observes the effort levels, if any, chosen in period 1 before he does. The winner is determined at the end of the game.

We assume that all of the above is common knowledge among the players. We employ subgame‐perfect equilibrium
as the solution concept.

3 | PLAYER 3'S STRICTLY OR WEAKLY DOMINANT ACTION IN THE FIRST STAGE

We begin our analysis by examining whether one of player 3's first‐stage actions strictly or weakly dominates the other
of his first‐stage actions. To examine it, we first solve the proper subgames which start at the second (or effort‐
expending) stage, and obtain player 3's equilibrium expected payoffs in these subgames. Then, we identify player 3's
strictly or weakly dominant action in the first stage, if any, by comparing player 3's equilibrium expected payoffs in the
subgames.

We have eight proper subgames starting at the second stage. If the three players all announce Period 1 in the first
stage, or if they all announce Period 2 in the first stage, then we have a simultaneous‐move subgame in which the three
players choose their effort levels simultaneously. If player i, for i = 1, 2, 3, announces Period 1 but the other players
announce Period 2, then we have the iL sequential‐move subgame—the subgame with player i as the leader—in which
player i chooses his effort level in period 1, and then, after observing player i's effort level, the other two players choose
their effort levels simultaneously in period 2. If players j and k, for j = 1, 2 and k = 2, 3 with j ≠ k, announce Period 1 but
the remaining player announces Period 2, then we have the jkL sequential‐move subgame—the subgame with players j
and k as the leaders—in which players j and k choose their effort levels simultaneously in period 1, and then, after
observing their effort levels, the remaining player chooses his effort level in period 2.

In Appendixes A–G, we solve these subgames, and obtain player 3's equilibrium expected payoffs in these subgames.
In Appendix H, we compare player 3's equilibrium expected payoffs in the subgames. We obtain the following lemma,
which immediately follows from Lemma H2.

Lemma 1 Under Assumption 1, we have the following. (a) If s1 < 2, then player 3's first‐stage action Period 1 strictly
dominates his first‐stage action Period 2. (b) If 2 ≤ s1 < s2/(s2 − 1), then player 3's first‐stage action Period 1 weakly
dominates his first‐stage action Period 2. (c) If s1 ≥ s2/(s2 − 1) and s2 < 2, then player 3's first‐stage action Period 1 weakly
dominates his first‐stage action Period 2. (d) If s2 ≥ 2, then player 3's first‐stage action Period 1 yields the same expected
payoff as his first‐stage action Period 2 for every list of the other players' first‐stage actions.

Note that Lemma 1 covers all the relevant values of s1 and s2 under Assumption 1, which can be verified by Figure 1.
In Figure 1, curve I represents the equation s1 = s2/(s2 − 1).

Lemma 1 says that, for any values of s1 and s2 satisfying Assumption 1, player 3's first‐stage action Period 1 yields at
least as much an expected payoff as his action Period 2, no matter what the other players announce in the first stage.
The intuition behind this is clear. Competing against the top two players, if player 3, the weakest player, announces
Period 2 (rather than Period 1) in the first stage, then he cannot enjoy a first‐mover advantage and can suffer from the
second‐mover disadvantage in the effort‐expending stage.

Based on Lemma 1, we mainly focus on the case where player 3, the weakest player, announcesPeriod 1 in the first stage
(see Sections 4 and 5). However, we also look at the case where player 3 announces Period 2 in the first stage (see Section 6).

4 | ANALYSIS OF THE PROPER SUBGAMES WITH PLAYER 3 ANNOUNCING
PERIOD 1

To obtain a subgame‐perfect equilibrium of the full game in the case where player 3 announces Period 1 in the first
stage, we first analyze the following proper subgames which start at the second (or effort‐expending) stage: the
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simultaneous‐move subgame and three sequential‐move subgames. The simultaneous‐move subgame arises when
players 1 and 2 both choose and announce Period 1 in the first stage. In this subgame, the three players choose their
effort levels simultaneously in period 1. If players 1 and 2 both choose and announce Period 2, then the 3L sequential‐
move subgame arises in which player 3 chooses his effort level in period 1, and then, after observing player 3's effort
level, players 1 and 2 choose their effort levels simultaneously in period 2. If player 1 announces Period 1 but player 2
announces Period 2, then the 13L sequential‐move subgame arise in which players 1 and 3 choose their effort levels
simultaneously in period 1, and then, after observing their effort levels, player 2 chooses his effort level in period 2.
Finally, the 23L sequential‐move subgame arises when player 2 announces Period 1 but player 1 announces Period 2. In
this subgame, players 2 and 3 choose their effort levels simultaneously in period 1, and then, after observing their effort
levels, player 1 chooses his effort level in period 2.

4.1 | The simultaneous‐move subgame

In this subgame, the three players choose their effort levels simultaneously in period 1. Each player seeks to maximize
his expected payoff over his effort level, given his belief about the other players' effort levels.

We obtain a unique Nash equilibrium of the simultaneous‐move subgame in Appendix A. Let xSi , for i = 1, 2, 3,
represent player i's equilibrium effort level, and let πSi represent player i's expected payoff at the Nash equilibrium. We
report them in Lemmas A1 and A2 in Appendix A.

Note that players 1 and 2 are always active at the Nash equilibrium. However, player 3, the weakest player, is active
at the Nash equilibrium if s1 þ s2 > s1s2 or, equivalently, s1 < s2/(s2 − 1), and he is inactive if s1 þ s2 ≤ s1s2 or,
equivalently, s1 ≥ s2/(s2 − 1).

4.2 | The 3L sequential‐move subgame

In this subgame, player 3 first chooses his effort level in period 1. Then, after observing player 3's effort level, players 1
and 2 choose their effort levels simultaneously in period 2.

Let x3L
i , for i = 1, 2, 3, represent player i's effort level specified in a subgame‐perfect equilibrium of the 3L sequential‐

move subgame. Let π3L
i represent player i's expected payoff in the subgame‐perfect equilibrium. We obtain them in

Appendix B, and report them in Lemmas B1 and B2.

F I G U R E 1 The values of the parameters at which player 2 expends effort before player 1 in equilibrium.
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Note that players 1 and 2 are always active in the subgame‐perfect equilibrium. However, player 3, the weakest
player, is active in the subgame‐perfect equilibrium if s1 þ s2 > s1s2 or, equivalently, s1 < s2/(s2 − 1), and he is inactive if
s1 þ s2 ≤ s1s2 or, equivalently, s1 ≥ s2/(s2 − 1).

4.3 | The 13L sequential‐move subgame

In this subgame, players 1 and 3 first choose their effort levels simultaneously in period 1. Then, after observing their
effort levels, player 2 chooses his effort level in period 2.

Let x13L
i , for i = 1, 2, 3, represent player i's effort level specified in a subgame‐perfect equilibrium of the 13L

sequential‐move subgame. Let π13L
i represent player i's expected payoff in the subgame‐perfect equilibrium. We obtain

them in Appendix C, and report them in Lemmas C1, C2, and C3.
Note that player 1 is always active in the subgame‐perfect equilibrium. However, player 2 is active in the subgame‐

perfect equilibrium if s1 < 2s2, and he is inactive if s1 ≥ 2s2. Player 3, the weakest player, is active in the subgame‐perfect
equilibrium if s1 < 2, and he is inactive if s1 ≥ 2.

4.4 | The 23L sequential‐move subgame

In this subgame, players 2 and 3 first choose their effort levels simultaneously in period 1. Then, after observing their
effort levels, player 1 chooses his effort level in period 2.

Let x23L
i , for i = 1, 2, 3, represent player i's effort level specified in a subgame‐perfect equilibrium of the 23L

sequential‐move subgame. Let π23L
i represent player i's expected payoff in the subgame‐perfect equilibrium. We obtain

them in Appendix D, and report them in Lemmas D1 and D2.
Note that players 1 and 2 are always active in the subgame‐perfect equilibrium. However, player 3, the weakest

player, is active in the subgame‐perfect equilibrium if s2 < 2, and he is inactive if s2 ≥ 2.

5 | FIRST‐STAGE DECISIONS ON THE TIMING OF EFFORT EXERTION WHEN
PLAYER 3 CHOOSES PERIOD 1

We now look at the players' first‐stage decisions (or announcements) on when to expend effort. Recall that we consider
here the case where player 3 announces Period 1 in the first stage.

In the first stage, each player has perfect foresight about the equilibrium of every (relevant) proper subgame, and
thus about the players' equilibrium expected payoffs reported in Appendixes. For example, player 1 knows that, given
that players 2 and 3 will announce Period 1, if he announces Period 1, then the players will end up with the payoffs, (πS1,
πS2, πS3), reported in Lemma A1 or A2.

Figure 2 illustrates the strategic interaction between players 1 and 2 in the first stage in the case where player 3
announces Period 1. Since players 1 and 2 each announce either Period 1 or Period 2, there are four possible combinations

F I G U R E 2 The strategic interaction between players 1 and 2 in the first stage in the case where player 3 announces Period 1.
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of actions resulting from their announcements: (Period 1, Period 1), (Period 1, Period 2), (Period 2, Period 1), and (Period 2,
Period 2).

The objective of this paper is to look at how endogenous timing of effort exertion affects players' behavior in a case
where there are only two active players in equilibrium when three players choose their effort levels simultaneously to
win a prize. Accordingly, we restrict our analysis to the case where only players 1 and 2 are active at the Nash equi-
librium of the corresponding three‐player simultaneous‐move contest. It follows from Lemma A2 that this case occurs
when Assumption 2 holds.4

Assumption 2 We assume that s1 þ s2 ≤ s1s2 or, equivalently, s1 ≥ s2/(s2 − 1).

Figure 1 illustrates the values of s1 and s2 which satisfy both Assumption 1 and Assumption 2. In the figure, curve I
represents the equation s1 þ s2 = s1s2 or, equivalently, s1 = s2/(s2 − 1). At the values of s1 and s2 located in the darkly,
medium, or lightly shaded area of Figure 1, only players 1 and 2 are active at the Nash equilibrium of the three‐player
simultaneous‐move contest (see Lemma A2).

Under Assumptions 1 and 2, which period does each player choose and announce in a subgame‐perfect equilibrium
of the full game? To answer this question, we first compare the equilibrium expected payoffs for player i, for i = 1, 2, in
the four (relevant) proper subgames analyzed in Appendixes A–D. Using the lemmas therein, it is straightforward to
obtain Lemma 2.

Lemma 2 Under Assumptions 1 and 2, we have: (a) πS1 < π23L
1 , (b) π13L

1 > π3L
1 , (c) πS2 > π13L

2 , and (d) π23L
2 < π3L

2 if 3
(2s2 − 1)2(s1 þ s2)2 < 4s1s2(1 þ s2)3, but π23L

2 ≥ π3L
2 otherwise.

Part (d) is stated in more detail as follows: π23L
2 < π3L

2 if 3(2s2 − 1)2(s1 þ s2)2 < 4s1s2(1 þ s2)3, but π23L
2 ≥ π3L

2 if 3
(2s2 − 1)2(s1 þ s2)2 ≥ 4s1s2(1 þ s2)3 and s2 < 2 hold or if s2 ≥ 2 holds.

In Figure 1, curve II represents the equation 3(2s2 − 1)2(s1 þ s2)2 = 4s1s2(1 þ s2)3, and it intersects curve I at (6.082,
1.197). The strict inequality 3(2s2 − 1)2(s1 þ s2)2 < 4s1s2 (1 þ s2)3 holds at the values of s1 and s2 in the area enclosed by
curves I and II. Thus, at the values of s1 and s2 located in the darkly shaded area, π23L

2 < π3L
2 holds. At the values of s1

and s2 located in the medium or lightly shaded area, π23L
2 ≥ π3L

2 holds.
Next, we compare the equilibrium expected payoffs for player 3 in the (relevant) proper subgames. We have the

comparison result, which is more than we need, in Lemma 1 (see also Lemma H2): For any values of s1 and s2 satisfying
Assumption 1, player 3's first‐stage action Period 1 yields at least as much an expected payoff as his action Period 2, no
matter what the other players announce in the first stage. Note that this implies immediately that, under Assumption 1,
player 3 has no incentive to deviate from Period 1.

Now, using Lemma 2 and the comparison result in the preceding paragraph, we obtain the following proposition.

Proposition 1 Under Assumptions 1 and 2, (a) if 3(2s2 − 1)2(s1 þ s2)2 < 4s1s2(1 þ s2)3, then the game has no subgame‐
perfect equilibrium in pure strategies (in which player 3 announces Period 1 in the first stage); (b) otherwise, the game
has a subgame‐perfect equilibrium in which player 1 announces Period 2 in the first stage while players 2 and 3
announce Period 1 in the first stage.

The proof of Proposition 1 is straightforward. First recall that player 3 has no incentive to deviate from Period 1, no
matter what the other players announce in the first stage. Next, consider the combination (Period 1, Period 1) at which
players 1 and 2 each announce Period 1 in the first stage (see Figure 2). It is immediate from part (a) of Lemma 2 that
player 1 has an incentive to deviate to Period 2. Next, consider the combination (Period 2, Period 2). It follows
immediately from part (b) of Lemma 2 that player 1 has an incentive to deviate to Period 1. Next, consider the com-
bination (Period 1, Period 2). Part (c) of Lemma 2 implies that player 2 has an incentive to deviate to Period 1. Finally,
consider the combination (Period 2, Period 1). If 3(2s2 − 1)2(s1 þ s2)2 < 4s1s2(1 þ s2)3, then it follows from part (d) of
Lemma 2 that player 2 has an incentive to deviate to Period 2, which, together with the above, leads to part (a) of
Proposition 1. However, if 3(2s2 − 1)2(s1 þ s2)2 ≥ 4s1s2(1 þ s2)3, then it follows from part (d) of Lemma 2 that player 2
has no incentive to deviate from Period 1, which, together with the fact that player 1 has no incentive to deviate from
Period 2, leads to part (b) of Proposition 1.

In Figure 1, the result of part (a) of Proposition 1 holds at the values of s1 and s2 located in the darkly shaded area,
and the result of part (b) holds at the values of s1 and s2 located in the medium or lightly shaded area. Note that we may
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say that asymmetries in composite strength between the top two players and player 3 are not significant in the darkly
shaded area.

In Proposition 1, the existence of a subgame‐perfect equilibrium in pure strategies depends on player 2's (first‐stage)
best response to player 1's first‐stage action Period 2 (as well as player 3's first‐stage action Period 1).

Consider part (a) of Proposition 1. At the values of s1 and s2 located in the darkly shaded area, if player 2 announces
Period 1 in the first stage, then player 3 expends positive effort in the effort‐expending stage (see Lemma D1). This
happens because, in the effort‐expending stage, player 2 (as one of the two weak leaders) chooses a restrained effort
level to trigger a softened response from player 1, the strong follower, which makes room for player 3 (as another weak
leader) to be active (since asymmetry in composite strength between player 2 and player 3 is not significant). However,
if player 2 announces Period 2 in the first stage, then player 3 expends zero effort in the effort‐expending stage (see
Lemma B2). This happens because, in the effort‐expending stage, player 3 (as the weak leader) expects that there will be
a big fight between the two strong followers (since asymmetry in composite strength between player 1 and player 2 is
not significant). Consequently, it turns out that player 2 is better off by announcing Period 2 rather than Period 1. This
then leads to the nonexistence of a subgame‐perfect equilibrium in pure strategies.

Next, consider part (b) of Proposition 1. At the values of s1 and s2 located in the medium or lightly shaded area,
player 2 is better off by announcing Period 1 rather than Period 2, and thus the game has a subgame‐perfect equilibrium
in which player 1 announces Period 2 while players 2 and 3 announce Period 1. This happens because, given (rather)
significant asymmetries in composite strength between the top two players and player 3, player 2 can ignore the
presence of player 3, the weakest player.

Indeed, part (b) of Proposition 1 follows from the following facts. The first is that player 2 announces Period 1 in the
first stage, no matter what player 1 announces. This fact, which is immediate from parts (c) and (d) of Lemma 2, can be
explained as follows.

Consider first the case where player 1 announces Period 1. Player 2 has two options: either to announce Period 1 or
to announce Period 2. If he announces Period 1, then he will compete with the other players on equal footing in the
effort‐expending stage. On the other hand, if player 2 announces Period 2, then he will suffer seriously from the second‐
mover disadvantage in the effort‐expending stage because he will face the aggressive leaders including the strongest
player. Accordingly, given that player 1 announces Period 1, player 2 also announces Period 1.

Next, consider the case where player 1 announces Period 2. In this case, if player 2 announces Period 1, then he will
be one of the two weak leaders in the effort‐expending stage, and can signal (to player 1, the strongest player) his
intention to avoid a big fight by choosing a restrained effort level. However, if player 2 announces Period 2, then he will
be a follower together with player 1 in the effort‐expending stage, and cannot avoid a big fight against player 1, the
strongest player. It turns out that player 2 is better off by announcing Period 1 rather than Period 2.

The second fact is that, given that player 2 announces Period 1, player 1 announces Period 2. This fact, which is
immediate from part (a) of Lemma 2, can be explained as follows. If player 1 announces Period 1, then he will compete
with the other players on equal footing in the effort‐expending stage: The three players will choose their effort levels
simultaneously and independently in period 1. On the other hand, if player 1 announces Period 2, then he will become
the only follower in the effort‐expending stage, and he, the strongest player, can compete efficiently against the two
weak players by easing up and responding with an appropriate level of effort to restrained effort levels of the two
intimidated weak leaders. Consequently, player 1 is better off by announcing Period 2 rather than Period 1.

A well‐known result obtained from two‐player asymmetric contests with endogenous timing of effort exertion is
that, in equilibrium, the strong player announces Period 2 while the weak player announces Period 1 (see e.g., Baik &
Shogren, 1992; Leininger, 1993). Part (a) of Proposition 1 implies that this well‐known result (or a similar one) does not
hold with the presence of an additional player if asymmetries between the top two players and the additional player are
not significant—that is, the additional player is unignorable. However, part (b) of Proposition 1 implies that the well‐
known result (or a similar one) holds with the presence of an additional player if asymmetries between the top two
players and the additional player are significant—that is, the additional player is ignorable.

5.1 | Active players in equilibrium

We henceforth focus on the subgame‐perfect equilibrium indicated in part (b) of Proposition 1. In the equilibrium,
player 1 announces Period 2 in the first stage, while players 2 and 3 announce Period 1, and thus the 23L sequential‐
move subgame arises in the effort‐expending stage. An interesting question that arises is: Who are active players in the
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equilibrium? It follows from Lemmas D1 and D2 that, under the relevant restrictions on the parameters, players 1 and 2
are always active in the equilibrium, but player 3 is not always active. Specifically, we obtain the following proposition
regarding player 3's activeness in the equilibrium.

Proposition 2 Under Assumptions 1 and 2, (a) if 3(2s2 − 1)2(s1 þ s2)2 ≥ 4s1s2(1 þ s2)3 and s2 < 2, then player 3 expends
positive effort in the subgame‐perfect equilibrium; (b) if s2 ≥ 2, then player 3 expends zero effort in the subgame‐perfect
equilibrium.

In Figure 1, the result of part (a) holds at the values of s1 and s2 located in the medium shaded area, and the result of
part (b) holds at the values of s1 and s2 located in the lightly shaded area.

Under Assumptions 1 and 2, if the three players are exogenously assumed to choose their effort levels simulta-
neously, player 3 is inactive at the Nash equilibrium of the three‐player simultaneous‐move contest. However, Prop-
osition 2 says that, if the players decide endogenously on when to expend effort, then player 3 can be active in
equilibrium. Specifically, it says that player 3 is active in equilibrium if asymmetry in composite strength between player
2 and player 3 is not very significant; however, he is inactive in equilibrium if asymmetry between them is very
significant.

The intuition behind part (a) of Proposition 2 is as follows. Facing an ignorable additional player, players 1 and 2
announce Period 2 and Period 1, respectively, in the first stage, as in two‐player asymmetric contests with endogenous
timing of effort exertion. Then, in the effort‐expending stage, player 2 (as one of the two weak leaders) chooses a
restrained effort level to trigger a softened response from player 1, the strong follower.5 This makes room for player 3 (as
another weak leader) to be active when asymmetry between player 2 and player 3 is not very significant.

5.2 | Effort levels in equilibrium

It is of interest to compare the equilibrium effort levels obtained in the current model with those in the corresponding
three‐player simultaneous‐move contest. Let the superscripts ) and SM indicate the equilibrium effort levels obtained
in the current model and those of the three‐player simultaneous‐move contest, respectively. Let T) represent the
equilibrium total effort level obtained in the current model, so that T) ≡ x∗

1 þx∗
2 þx∗

3. Let TSM represent the equilibrium
total effort level in the three‐player simultaneous‐move contest, so that TSM ≡ xSM

1 þxSM
2 þxSM

3 .
The equilibrium effort levels obtained in the current model are equal to those in the 23L sequential‐move subgame.

The equilibrium effort levels in the three‐player simultaneous‐move contest are equal to those in the simultaneous‐
move subgame in the current model. Hence, we compare the equilibrium effort levels in the 23L sequential‐move
subgame with those in the simultaneous‐move subgame. Using Lemmas A2, D1, and D2, we obtain the following
proposition which summarizes the comparison results.

Proposition 3 Under Assumptions 1 and 2, (a) if 3(2s2 − 1)2(s1 þ s2)2 ≥ 4s1s2(1 þ s2)3 and s2 < 2, then we have that
x∗

1<xSM
1 , x∗

2<xSM
2 , x∗

3>xSM
3 ¼ 0, and T* < TSM; (b) if s2 ≥ 2, then we have that x∗

1<xSM
1 , x∗

2<xSM
2 , x∗

3¼xSM
3 ¼ 0, and T* < TSM.

Note that, when comparing the equilibrium total effort levels in part (a), we assume, for tractability, that σ1 = σ2 = 1.
In Figure 1, the result of part (a) holds at the values of s1 and s2 located in the medium shaded area, and the result of

part (b) holds at the values of s1 and s2 located in the lightly shaded area.
Proposition 3 says that the equilibrium total effort level is lower in the current model than in the corresponding

three‐player simultaneous‐move contest.6 This result is interesting because it holds even when player 3 is active in the
current model.

The intuition behind the result is as follows. In the subgame‐perfect equilibrium of the current model, the two weak
players, players 2 and 3, first choose their effort levels in period 1, and then the strongest player, player 1, chooses his
effort level in period 2. Given this order of choosing effort levels, the two intimidated weak leaders choose restrained
effort levels in order to avoid a big fight against (or to trigger a softened response from) the strongest player. In response
to the weak leaders' restrained behavior, the strongest player eases up—compared with the corresponding three‐player
simultaneous‐move contest—and chooses an appropriate level of effort. Consequently, the equilibrium total effort level
is lower in the current model than in the corresponding three‐player simultaneous‐move contest.
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6 | FIRST‐STAGE DECISIONS ON THE TIMING OF EFFORT EXERTION WHEN
PLAYER 3 CHOOSES PERIOD 2

To obtain a subgame‐perfect equilibrium of the full game in the case where player 3 announces Period 2 in the first
stage, we first analyze the following proper subgames: the simultaneous‐move subgame, the 1L sequential‐move
subgame, the 2L sequential‐move subgame, and the 12L sequential‐move subgame. Appendixes A, E, F, and G
report the outcomes of these subgames.

Then, under Assumption 2 (in addition to Assumption 1), we look at the players' first‐stage decisions (or an-
nouncements) on when to expend effort. Note that, in the first stage, each player has perfect foresight about the players'
equilibrium expected payoffs in every (relevant) proper subgame.

Figure 3 illustrates the strategic interaction between players 1 and 2 in the first stage in the case where player 3
announces Period 2. Using Lemmas A2, E3, E4, F3, and G3, it is straightforward to obtain Lemma 3, which compares
the equilibrium expected payoffs for player i, for i = 1, 2, in the four (relevant) proper subgames.

Lemma 3 Under Assumptions 1 and 2, we have: (a) π12L
1 < π2L

1 , (b) π1L
1 > πS1 , (c) π12L

2 > π1L
2 , and (d) π2L

2 > πS2 .

In Figure 1, Lemma 3 holds at the values of s1 and s2 located in the darkly, medium, or lightly shaded area.
Next, we compare the equilibrium expected payoffs for player 3 in the relevant proper subgames. Lemma 3 implies

that, in any subgame‐perfect equilibrium of the full game, player 1 announces Period 2 in the first stage while player 2
announces Period 1 in the first stage. Due to this fact, we compare the equilibrium expected payoffs for player 3 only in
the case where player 1 announces Period 2 in the first stage while player 2 announces Period 1 in the first stage. From
parts (c) and (d) of Lemma H2, we have under Assumption 1: π23L

3 > π2L
3 if s1 ≥ s2/(s2 − 1) and s2 < 2, and π23L

3 ¼ π2L
3 if

s2 ≥ 2. Put differently, π23L
3 > π2L

3 holds at the values of s1 and s2 located in the darkly or medium shaded area of
Figure 1, and π23L

3 ¼ π2L
3 holds at the values of s1 and s2 located in the lightly shaded area. Note that this implies

immediately that, given that player 1 announces Period 2 and player 2 announces Period 1, player 3 has an incentive to
deviate from Period 2 if s1 ≥ s2/(s2 − 1) and s2 < 2; but he has no incentive to do so if s2 ≥ 2.

Now, using Lemma 3 and the comparison results in the preceding paragraph, we obtain the following proposition.

Proposition 4 Under Assumptions 1 and 2, (a) if s2 < 2, then the game has no subgame‐perfect equilibrium in pure
strategies (in which player 3 announces Period 2 in the first stage); (b) if s2 ≥ 2, the game has a subgame‐perfect equi-
librium in which players 1 and 3 announce Period 2 in the first stage while player 2 announces Period 1 in the first stage.

In Figure 1, the result of part (a) holds at the values of s1 and s2 located in the darkly or medium shaded area, and
the result of part (b) holds at the values of s1 and s2 located in the lightly shaded area.

The explanation for Proposition 4 can be made similarly to that for Proposition 1, and therefore is omitted. We may
well say that part (b) arises because, if s2 ≥ 2, player 3 is indifferent between choosing Period 1 or Period 2 in the first
stage (see part (d) of Lemma 1).

In the subgame‐perfect equilibrium indicated in part (b) of Proposition 4, we have the same outcome as in part (b) of
Proposition 2 and part (b) of Proposition 3. Since we have provided there the intuition behind the outcome, we omit it
here.

F I G U R E 3 The strategic interaction between players 1 and 2 in the first stage in the case where player 3 announces Period 2.
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7 | CONCLUSIONS

We have studied a three‐player contest in which there are only two active players in equilibrium when the three
players choose their effort levels simultaneously to win a prize. Specifically, we have studied a three‐player contest in
which only players 1 and 2 are active at the Nash equilibrium of the corresponding three‐player simultaneous‐move
contest.

We have looked at how endogenous timing of effort exertion affects the players' behavior. In the model, there are
two periods, 1 and 2, in which the players can choose their effort levels. The players play the following game. First, the
players decide independently and announce simultaneously whether they each will expend their effort in period 1 or in
period 2. Then, after knowing when the players choose their effort levels, each player independently chooses his effort
level in the period which he announced.

We have shown in Proposition 1 that, given not significant asymmetries between the top two players and player 3,
the game has no subgame‐perfect equilibrium in pure strategies in which player 3 announces Period 1 in the first stage.
However, given significant asymmetries between them, the game has a subgame‐perfect equilibrium in which player 1
announces Period 2 in the first stage and chooses his effort level in period 2, while players 2 and 3 announce Period 1 in
the first stage and choose their effort levels in period 1.

Next, we have shown in Proposition 4 that, given very significant asymmetries between the top two players and the
weakest player, the game has a subgame‐perfect equilibrium in which players 1 and 3 announce Period 2 in the first
stage, while player 2 announces Period 1 in the first stage.

Next, we have shown in Proposition 2 that, in the subgame‐perfect equilibrium indicated in part (b) of Proposition 1,
player 3 is active if asymmetry between player 2 and player 3 is not very significant; however, he is inactive if asymmetry
between them is very significant. We have also shown that, in the subgame‐perfect equilibrium indicated in part (b) of
Proposition 4, player 3 is inactive.

Finally, we have shown in Proposition 3 that, in any of the subgame‐perfect equilibria, the total effort level is lower
—even when player 3 is active—compared with the corresponding three‐player simultaneous‐move contest.

It would be interesting to experimentally investigate the theoretical predictions of the current model. It would also
be interesting to compare the results of this experimental study with those of existing experimental studies of two‐player
asymmetric contests (see e.g., Baik et al., 1999). We leave them for future research.
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ENDNOTES
1 In the theory of contests, a contest refers to a situation in which players compete by expending effort to win a prize. Examples include

elections, rent‐seeking contests, patent‐seeking contests, environmental conflicts, all‐pay auctions, and sporting contests. See for example
Tullock (1980), Dixit (1987), Hillman and Riley (1989), Baye et al. (1993), Corchón (2007), Epstein and Nitzan (2007), Congleton
et al. (2008), Konrad (2009), Chowdhury and Gürtler (2015), and Vojnović (2015).

2 A three‐player simultaneous‐move contest refers to a contest in which three players compete by choosing their effort levels simultaneously
to win a prize.

3 This logit‐form contest success function is extensively used in the theory of contests. See for example Tullock (1980), Hillman and
Riley (1989), Leininger (1993), Baik and Shogren (1994), Morgan (2003), Baik (2004), Epstein and Nitzan (2007), Konrad (2009), Baik and
Lee (2013), Vojnović (2015), Baik et al. (2022), and Barbieri and Serena (2022).

4 Assumption 2 can be rewritten as s3 ≤ s1s2/(s1 þ s2) because we assume that s3 = 1. Interestingly, Lemma A2 shows that we have
xS1=v1 = xS2=v2 or, equivalently, xS1=xS2¼v1/v2 at the Nash equilibrium at which only the top two players are active (see Baik, 2004).

5 Using Lemmas A2 and D1, it is straightforward to check that, under Assumptions 1 and 2, we have x23L
2 <xS2 if 3

(2s2 − 1)2(s1 þ s2)2 ≥ 4s1s2(1þ s2)3 and s2 < 2. Note that player 2's effort level xS2 at the Nash equilibrium of the simultaneous‐move subgame
is equal to his effort level at the Nash equilibrium of the three‐player simultaneous‐move contest.

6 Baik and Shogren (1992) and Leininger (1993) study two‐player asymmetric contests with endogenous timing of effort exertion, and show
that the equilibrium total effort level is lower than in the corresponding two‐player simultaneous‐move contest.
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APPENDIX A

ANALYSIS OF THE SIMULTANEOUS‐MOVE SUBGAME
Player 1 seeks to maximize his expected payoff π1 in Equation (2) over his effort level x1, given his belief about the other
players' effort levels. From the first‐order condition for maximizing π1, we obtain player 1's reaction function:
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x1 ¼

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1v3ðσ2x2 þ x3Þ

p
− ðσ2x2 þ x3Þ

o
=σ1 for 0 < σ2x2 þ x3 ≤ s1v3

0 for σ2x2 þ x3 > s1v3:

It is straightforward to check that the second‐order condition for maximizing π1 is satisfied. (Note that every
maximization problem in this paper satisfies its second‐order condition.)

Similarly, we obtain the reaction functions for players 2 and 3, respectively:

x2 ¼

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v3ðσ1x1 þ x3Þ

p
− ðσ1x1 þ x3Þ

o
=σ2 for 0 < σ1x1 þ x3 ≤ s2v3

0 for σ1x1 þ x3 > s2v3

and

x3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v3ðσ1x1 þ σ2x2Þ

p
− ðσ1x1 þ σ2x2Þ for 0 < σ1x1 þ σ2x2 ≤ v3

0 for σ1x1 þ σ2x2 > v3:

Next, we obtain the Nash equilibrium, (xS1, xS2, xS3), by solving the system of three simultaneous equations which
consists of the three reaction functions above. Finally, we obtain player i's expected payoff πSi at the Nash equilibrium
by substituting the players' equilibrium effort levels into Equation (2).

Lemma A1 In the case where s1 þ s2 > s1s2 or, equivalently, s1 < s2/(s2 − 1), we obtain the following at the Nash
equilibrium of the simultaneous‐move subgame. (a) The players' effort levels are: xS1 ¼ 2β1s2(s1s2þ s1− s2)v3/(s1s2þ s1þ s2)2,
xS2 ¼ 2β2s1(s1s2 þ s2 − s1)v3/(s1s2 þ s1 þ s2)2, and xS3 ¼ 2s1s2(s1 þ s2 − s1s2)v3/(s1s2 þ s1 þ s2)2. (b) The players'
expected payoffs are: πS1 ¼ β1(s1s2 þ s1 − s2)2v3/(s1s2 þ s1 þ s2)2, πS2 ¼ β2(s1s2 þ s2 − s1)2v3/(s1s2 þ s1 þ s2)2, and πS3 ¼
(s1 þ s2 − s1s2)2v3/(s1s2 þ s1 þ s2)2.

Lemma A2 In the case where s1 þ s2 ≤ s1s2 or, equivalently, s1 ≥ s2/(s2 − 1), we obtain the following at the Nash
equilibrium of the simultaneous‐move subgame. (a) The players' effort levels are: xS1 ¼ β1s1s2v3/(s1 þ s2)

2, xS2 ¼ β2s1s2v3/
(s1 þ s2)2, and xS3 ¼ 0. (b) The players' expected payoffs are: πS1 ¼ β1s21v3/(s1 þ s2)

2, πS2 ¼ β2s22v3/(s1 þ s2)
2, and πS3 ¼ 0.

Note that, in Lemma A1, the three players are all active at the Nash equilibrium, whereas, in Lemma A2, only
players 1 and 2 are active at the Nash equilibrium. It is immediate from these lemmas that player 3, the weakest player,
is active at the Nash equilibrium if s1 þ s2 > s1s2, but he is inactive if s1 þ s2 ≤ s1s2.

APPENDIX B

ANALYSIS OF THE 3L SEQUENTIAL‐MOVE SUBGAME
Player 3 first chooses his effort level in period 1. Then, after observing player 3's effort level, players 1 and 2 choose their
effort levels simultaneously and independently in period 2.

To obtain a subgame perfect equilibrium outcome of this subgame, we work backward. In period 2, players 1 and 2
know player 3's effort level x3. Player 1 seeks to maximize his expected payoff π1 in Equation (2) over his effort level x1,
given his belief about player 2's effort level. From the first‐order condition for maximizing π1, we obtain player 1's
reaction function:

x1 ¼

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1v3ðσ2x2 þ x3Þ

p
− ðσ2x2 þ x3Þ

o
=σ1 for 0 < σ2x2 þ x3 ≤ s1v3

0 for σ2x2 þ x3 > s1v3:

Similarly, we obtain the reaction function for player 2:

x2 ¼

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v3ðσ1x1 þ x3Þ

p
− ðσ1x1 þ x3Þ

o
=σ2 for 0 < σ1x1 þ x3 ≤ s2v3

0 for σ1x1 þ x3 > s2v3:

BAIK and LEE - 13
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Using these two reaction functions, we obtain the Nash equilibrium in period 2:

xN1 ðx3Þ ¼

�

s21s2v3 − 2s2ðs1 þ s2Þx3 þ s1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21s22v2
3 þ 4s1s2v3ðs1 þ s2Þx3

q �

=2σ1ðs1 þ s2Þ2

and

xN2 ðx3Þ ¼

�

s1s22v3 − 2s1ðs1 þ s2Þx3 þ s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21s22v2
3 þ 4s1s2v3ðs1 þ s2Þx3

q �

=2σ2ðs1 þ s2Þ2:

Next, consider period 1 in which player 3 chooses his effort level. Let π3(x3) be player 3's expected payoff which takes
into account the Nash equilibrium in period 2. Substituting xN1 (x3) and xN2 (x3) into Equation (2), we obtain

π3ðx3Þ ¼ 2ðs1 þ s2Þv3x3=

�

s1s2v3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s21s22v2
3 þ 4s1s2v3ðs1 þ s2Þx3

q �

− x3:

In period 1, player 3 has perfect foresight about π3(x3) for any value of x3. He chooses a value of x3 which maximizes
π3(x3). From the first‐order condition for maximizing π3(x3), we obtain player 3's equilibrium effort level x3L

3 .
Substituting x3L

3 into xN1 (x3) and xN2 (x3) above, we obtain the equilibrium effort levels of players 1 and 2, x3L
1 and x3L

2 ,
respectively. Substituting into Equation (2) the players' equilibrium effort levels, we obtain player i's equilibrium ex-
pected payoff π3L

i .

Lemma B1 In the case where s1 þ s2 > s1s2 or, equivalently, s1 < s2/(s2 − 1), we obtain the following in the subgame‐perfect
equilibrium of the 3L sequential‐move subgame. (a) The players' effort levels are: x3L

1 ¼ {2s31s2 þ s21s22 − (s1 þ s2)2 þ 2s21
(s1þ s2)}v3/4σ1s1(s1þ s2)2, x3L

2 ¼ {2s1s32 þ s21s22 − (s1þ s2)2þ 2s22(s1 þ s2)}v3/4σ2s2(s1 þ s2)
2, and x3L

3 ¼ {(s1 þ s2)2 − }v3/4
s1s2(s1 þ s2). (b) The players' expected payoffs are: π3L

1 ¼ {2s21þs1s2 − (s1 þ s2)}2 v3/4σ1s1(s1 þ s2)2,
π3L

2 ¼{2s22þs1s2 − (s1 þ s2)}2v3/4σ2s2(s1 þ s2)2, and π3L
3 ¼(s1 þ s2 − s1s2)2v3/4s1s2(s1 þ s2).

Lemma B2 In the case where s1 þ s2 ≤ s1s2 or, equivalently, s1 ≥ s2/(s2 − 1), we obtain the following in the subgame‐perfect
equilibrium of the 3L sequential‐move subgame. (a) The players' effort levels are: x3L

1 ¼ β1s1s2v3/(s1 þ s2)
2, x3L

2 ¼ β2s1s2v3/
(s1 þ s2)2, and x3L

3 ¼ 0. (b) The players' expected payoffs are: π3L
1 ¼ β1s21v3/(s1 þ s2)2, π3L

2 ¼ β2s22v3/(s1 þ s2)2,
and π3L

3 ¼ 0.

Note that, in Lemma B1, the three players are all active in the subgame‐perfect equilibrium, whereas, in Lemma B2,
only players 1 and 2 are active in the subgame‐perfect equilibrium. It is immediate from these lemmas that player 3, the
weakest player, is active in the subgame‐perfect equilibrium if s1 þ s2 > s1s2, but he is inactive if s1 þ s2 ≤ s1s2.

APPENDIX C

ANALYSIS OF THE 13L SEQUENTIAL‐MOVE SUBGAME
Players 1 and 3 first choose their effort levels simultaneously and independently in period 1, and then, after observing
their effort levels, player 2 chooses his effort level in period 2.

To obtain a subgame perfect equilibrium outcome of this subgame, we work backward. In period 2, player 2 knows
player 1's effort level, x1, and player 3's effort level, x3. Player 2 seeks to maximize his expected payoff π2 in Equation (2)
over his effort level x2. From the first‐order condition for maximizing π2, we obtain player 2's strategy in any subgame‐
perfect equilibrium:

x2ðx1; x3Þ ¼

n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v3ðσ1x1 þ x3Þ

p
− ðσ1x1 þ x3Þ

o
=σ2 f or 0 < σ1x1 þ x3 ≤ s2v3

0 for σ1x1 þ x3 > s2v3:
ðC1Þ

14 - BAIK and LEE
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Next, consider period 1 in which players 1 and 3 choose their effort levels simultaneously and independently. Let
πj(x1, x3), for j = 1, 3, be player j's expected payoff which takes into account player 2's equilibrium strategy in
Equation (C1). Substituting x2(x1, x3) in Equation (C1) into Equation (2), we obtain

π1ðx1; x3Þ ¼ s1v3x1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v3ðσ1x1 þ x3Þ

p
− x1

and
π3ðx1; x3Þ ¼ v3x3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2v3ðσ1x1 þ x3Þ

p
− x3:

ðC2Þ

In period 1, players 1 and 3 have perfect foresight about π1(x1, x3) and π3(x1, x3) for any values of x1 and x3.
We first obtain the reaction function for player 1. Player 1 seeks to maximize π1(x1, x3) in Equation (C2) over his

effort level x1, given his belief about player 3's effort level x3. The first‐order condition for maximizing π1(x1, x3) re-
duces to

4s2ðσ1x1 þ x3Þ
3 − s21v3ðσ1x1 þ 2x3Þ

2
¼ 0: ðC3Þ

Naturally, Equation (C3) is the implicit form of player 1's reaction function, x1 = x1(x3).
Similarly, the implicit form of player 3's reaction function, x3 = x3(x1), is

4s2ðσ1x1 þ x3Þ
3 − v3ð2σ1x1 þ x3Þ

2
¼ 0: ðC4Þ

Using Equations (C3) and (C4), we obtain the equilibrium effort levels of players 1 and 3, x13L
1 and x13L

3 , respectively.
Substituting x13L

1 and x13L
2 into x2(x1, x3) in Equation (C1), we obtain player 2's equilibrium effort level x13L

2 .
Substituting into Equation (2) the players' equilibrium effort levels, we obtain player i's equilibrium expected
payoff π13L

i .

Lemma C1 In the case where s1 < 2, we obtain the following in the subgame‐perfect equilibrium of the 13L sequential‐
move subgame. (a) The players' effort levels are: x13L

1 ¼ 9s21(2s1 − 1)v3/4σ1s2(s1 þ 1)3, x13L
2 ¼ 3s1(2s1s2 þ 2s2 − 3s1)v3/

4σ2s2(s1 þ 1)2, and x13L
3 ¼ 9s21(2−s1)v3/4s2(s1 þ 1)3. (b) The players' expected payoffs are: π13L

1 ¼ 3s21(2s1 − 1)2v3/
4σ1s2(s1 þ 1)3, π13L

2 ¼ (2s1s2 þ 2s2 − 3s1)2v3/4σ2s2(s1 þ 1)2, and π13L
3 ¼ 3s1(2 − s1)2v3/4s2(s1 þ 1)3.

Lemma C2 In the case where 2 ≤ s1 < 2s2, we obtain the following in the subgame‐perfect equilibrium of the 13L
sequential‐move subgame. (a) The players' effort levels are: x13L

1 ¼ s21v3/4σ1s2, x13L
2 ¼ s1(2s2 − s1)v3/4σ2s2, and x13L

3 ¼ 0. (b)
The players' expected payoffs are: π13L

1 ¼ s21v3/4σ1s2, π13L
2 ¼ (2s2 − s1)2v3/4σ2s2, and π13L

3 ¼ 0.

Lemma C3 In the case where s1 ≥ 2s2, we obtain the following in the subgame‐perfect equilibrium of the 13L sequential‐
move subgame. (a) The players' effort levels are: x13L

1 ¼ s2v3/σ1, x13L
2 ¼ 0, and x13L

3 ¼ 0. (b) The players' expected payoffs
are: π13L

1 ¼ (s1 − s2)v3/σ1, π13L
2 ¼ 0, and π13L

3 ¼ 0.

Note that, in Lemma C1, the three players are all active in the subgame‐perfect equilibrium; in Lemma C2, only
players 1 and 2 are active in the subgame‐perfect equilibrium; and in Lemma C3, only player 1 is active in the subgame‐
perfect equilibrium. It is immediate from these lemmas that player 3, the weakest player, is active in the subgame‐
perfect equilibrium if s1 < 2, but he is inactive if s1 ≥ 2. It is immediate from the lemmas that player 2 is active in
the subgame‐perfect equilibrium if s1 < 2s2, but he is inactive if s1 ≥ 2s2. Lemma C3 shows that, if s1 ≥ 2s2, then player 1
chooses the smallest of all effort levels to which player 2's best response is zero.

APPENDIX D

ANALYSIS OF THE 23L SEQUENTIAL‐MOVE SUBGAME
Players 2 and 3 first choose their effort levels simultaneously and independently in period 1, and then, after observing
their effort levels, player 1 chooses his effort level in period 2.
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Now that the analysis is similar to that for the 13L sequential‐move subgame in Appendix C, we omit it.

Lemma D1 In the case where s2 < 2, we obtain the following in the subgame‐perfect equilibrium of the 23L sequential‐
move subgame. (a) The players' effort levels are: x23L

1 ¼ 3s2(2s1s2 þ 2s1 − 3s2)v3/4σ1s1(s2 þ 1)2, x23L
2 ¼ 9s22(2s2 − 1)v3/

4σ2s1(s2 þ 1)3, and x23L
3 ¼ 9s22(2−s2)v3/4s1(s2 þ 1)

3. (b) The players' expected payoffs are: π23L
1 ¼ (2s1s2 þ 2s1 − 3s2)2v3/

4σ1s1(s2 þ 1)2, π23L
2 ¼ 3s22(2s2 − 1)2v3/4σ2s1(s2 þ 1)3, and π23L

3 ¼ 3s2(2−s2)2v3/4s1(s2 þ 1)3.

Lemma D2 In the case where s2 ≥ 2, we obtain the following in the subgame‐perfect equilibrium of the 23L sequential‐
move subgame. (a) The players' effort levels are: x23L

1 ¼ s2(2s1 − s2)v3/4σ1s1, x23L
2 ¼ s22v3/4σ2s1, and x23L

3 ¼ 0. (b) The
players' expected payoffs are: π23L

1 ¼ (2s1 − s2)2v3/4σ1s1, π23L
2 ¼s22v3/4σ2s1, and π23L

3 ¼ 0.

Note that, in Lemma D1, the three players are all active in the subgame‐perfect equilibrium, whereas, in Lemma D2,
only players 1 and 2 are active in the subgame‐perfect equilibrium. It is immediate from these lemmas that player 3, the
weakest player, is active in the subgame‐perfect equilibrium if s2 < 2, but he is inactive if s2 ≥ 2.

APPENDIX E

ANALYSIS OF THE 1L SEQUENTIAL‐MOVE SUBGAME
Player 1 first chooses his effort level in period 1. Then, after observing player 1's effort level, players 2 and 3 choose their
effort levels simultaneously and independently in period 2.

Now that the analysis is similar to that for the 3L sequential‐move subgame in Appendix B, we omit it.

Lemma E1 In the case where s1 < (s2 þ 2)/(s2 þ 1), we obtain the following in the subgame‐perfect equilibrium of the 1L
sequential‐move subgame. (a) The players' effort levels are: x1L

1 ¼ {s21(s2 þ 1)
2 − s22}v3/4σ1s2(s2 þ 1), x1L

2 ¼ {2s32þs22−s21
(s2 þ 1)2 þ 2s1s22(s2 þ 1)}v3/4σ2s2(s2 þ 1)

2, and x1L
3 ¼ {s22 þ 2s2 − s21(s2 þ 1)

2 þ 2s1(s2 þ 1)}v3/4(s2 þ 1)2. (b) The players'
expected payoffs are: π1L

1 ¼{s1(s2 þ 1) − s2}2v3/4σ1s2(s2 þ 1), π1L
2 ¼ {2s22þ s2 − s1(s2 þ 1)}2v3/4σ2s2 (s2 þ 1)2, and

π1L
3 ¼ {s2 þ 2 − s1(s2 þ 1)}2v3/4(s2 þ 1)2.

Lemma E2 In the case where s1 ≥ (s2 þ 2)/(s2 þ 1), we obtain the following in the subgame‐perfect equilibrium of the
1L sequential‐move subgame. (a) Player 3's effort level is zero: x1L

3 ¼ 0. (b) Player 3's expected payoff is zero: π1L
3 ¼ 0.

It is immediate from Lemmas E1 and E2 that player 3, the weakest player, is active in the subgame‐perfect equi-
librium if s1 < (s2 þ 2)/(s2 þ 1), but he is inactive if s1 ≥ (s2 þ 2)/(s2 þ 1).

We need Lemmas E3 and E4 to obtain the results in Section 6.

Lemma E3 In the case where s2/(s2 − 1) ≤ s1 < 2s2, we obtain the following in the subgame‐perfect equilibrium of the 1L
sequential‐move subgame. (a) The players' effort levels are: x1L

1 ¼ s21v3/4σ1s2, x1L
2 ¼s1(2s2 − s1)v3/4σ2s2, and x1L

3 ¼ 0. (b) The
players' expected payoffs are: π1L

1 ¼s21v3/4σ1s2, π1L
2 ¼(2s2 − s1)2v3/4σ2s2, and π1L

3 ¼ 0.

Lemma E4 In the case where s1 ≥ s2/(s2 − 1) and s1 ≥ 2s2, we obtain the following in the subgame‐perfect equilibrium of
the 1L sequential‐move subgame. (a) The players' effort levels are: x1L

1 ¼s2v3/σ1, x1L
2 ¼ 0, and x1L

3 ¼ 0. (b) The players' ex-
pected payoffs are: π1L

1 ¼(s1 − s2)v3/σ1, π1L
2 ¼ 0, and π1L

3 ¼ 0.

APPENDIX F

ANALYSIS OF THE 2L SEQUENTIAL‐MOVE SUBGAME
Player 2 first chooses his effort level in period 1. Then, after observing player 2's effort level, players 1 and 3 choose their
effort levels simultaneously and independently in period 2.

Now that the analysis is similar to that for the 3L sequential‐move subgame in Appendix B, we omit it.
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Lemma F1 In the case where s2 < (s1 þ 2)/(s1 þ 1) or, equivalently, s1 < (2 − s2)/(s2 − 1), we obtain the following in the
subgame‐perfect equilibrium of the 2L sequential‐move subgame. (a) The players' effort levels are: x2L

1 ¼ {2s31þs21−s22
(s1 þ 1)2 þ 2s21s2(s1 þ 1)}v3/4σ1s1 (s1 þ 1)2, x2L

2 ¼{s22(s1 þ 1)2 − s21}v3/4σ2s1(s1 þ 1), and x2L
3 ¼{s21 þ 2s1 −

s22(s1 þ 1)
2 þ 2s2(s1 þ 1)}v3/4(s1 þ 1)2. (b) The players' expected payoffs are: π2L

1 ¼{2s21þs1 − s2(s1 þ 1)}2 v3/4σ1s1(s1 þ 1)2,
π2L

2 ¼{s2(s1 þ 1) − s1}2v3/4σ2s1(s1 þ 1), and π2L
3 ¼ {s1 þ 2 − s2(s1 þ 1)}2 v3/4(s1 þ 1)2.

Lemma F2 In the case where s2 ≥ (s1 þ 2)/(s1 þ 1) or, equivalently, s1 ≥ (2 − s2)/(s2 − 1), we obtain the following in the
subgame‐perfect equilibrium of the 2L sequential‐move subgame. (a) Player 3's effort level is zero: x2L

3 ¼ 0. (b) Player 3's
expected payoff is zero: π2L

3 ¼ 0.

It is immediate from Lemmas F1 and F2 that player 3, the weakest player, is active in the subgame‐perfect equi-
librium if s2 < (s1 þ 2)/(s1 þ 1), but he is inactive if s2 ≥ (s1 þ 2)/(s1 þ 1).

We need Lemma F3 to obtain the results in Section 6.

Lemma F3 In the case where s1 ≥ s2/(s2 − 1), we obtain the following in the subgame‐perfect equilibrium of the 2L
sequential‐move subgame. (a) The players' effort levels are: x2L

1 ¼ s2(2s1 − s2)v3/4σ1s1, x2L
2 ¼s22v3/4σ2s1, and x2L

3 ¼ 0. (b) The
players' expected payoffs are: π2L

1 ¼(2s1 − s2)2v3/4σ1s1, π2L
2 ¼s22v3/4σ2s1, and π2L

3 ¼ 0.

APPENDIX G

ANALYSIS OF THE 12L SEQUENTIAL‐MOVE SUBGAME
Players 1 and 2 first choose their effort levels simultaneously and independently in period 1, and then, after observing
their effort levels, player 3 chooses his effort level in period 2.

Now that the analysis is similar to that for the 13L sequential‐move subgame in Appendix C, we omit it.

Lemma G1 In the case where s1 < 2s2/(3s2 − 2), we obtain the following in the subgame‐perfect equilibrium of the 12L
sequential‐move subgame. (a) The players' effort levels are: x12L

1 ¼ 9s21s22(2s1 − s2)v3/4σ1(s1 þ s2)3, x12L
2 ¼ 9s21s22(2s2 − s1)v3/

4σ2(s1þ s2)3, and x12L
3 ¼ 3s1s2(2s1þ 2s2 − 3s1s2)v3/4(s1þ s2)2. (b) The players' expected payoffs are: π12L

1 ¼ 3s21s2(2s1 − s2)2v3/
4σ1(s1 þ s2)3, π12L

2 ¼ 3s1s22(2s2 − s1)2v3/4σ2(s1 þ s2)3, and π12L
3 ¼(2s1 þ 2s2 − 3s1s2)2v3/4(s1 þ s2)2.

Lemma G2 In the case where s1 ≥ 2s2/(3s2 − 2), we obtain the following in the subgame‐perfect equilibrium of the 12L
sequential‐move subgame. (a) Player 3's effort level is zero: x12L

3 ¼ 0. (b) Player 3's expected payoff is zero: π12L
3 ¼ 0.

It is immediate from Lemmas G1 and G2 that player 3, the weakest player, is active in the subgame‐perfect equi-
librium if s1 < 2s2/(3s2 − 2), but he is inactive if s1 ≥ 2s2/(3s2 − 2).

We need Lemma G3 to obtain the results in Section 6.

Lemma G3 In the case where s1 ≥ s2/(s2 − 1), we obtain the following in the subgame‐perfect equilibrium of the 12L
sequential‐move subgame. (a) The players' effort levels are: x12L

1 ¼ β1s1s2v3/(s1 þ s2)2, x12L
2 ¼ β2s1s2v3/(s1 þ s2)2, and

x12L
3 ¼ 0. (b) The players' expected payoffs are: π12L

1 ¼ β1s21v3/(s1 þ s2)
2, π12L

2 ¼ β2s22v3/(s1 þ s2)
2, and π12L

3 ¼ 0.

APPENDIX H

PLAYER 3'S STRICTLY OR WEAKLY DOMINANT ACTION IN THE FIRST STAGE
In order to examine whether one of player 3's first‐stage actions strictly or weakly dominates the other of his first‐stage
actions, we compare player 3's equilibrium expected payoffs in the proper subgames which start at the second (or effort‐
expending) stage. Player 3's equilibrium expected payoffs in these proper subgames are obtained in Appendixes A–G.
Using the lemmas therein, it is straightforward to obtain Lemma H1.
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Lemma H1 (a) πS3 > π12L
3 if s1 < s2/(s2 − 1), but πS3 ¼ π12L

3 ¼ 0 otherwise. (b) π13L
3 > π1L

3 if s1 < 2, but π13L
3 ¼ π1L

3 ¼ 0
otherwise. (c) π23L

3 > π2L
3 if s2 < 2, but π23L

3 ¼ π2L
3 ¼ 0 otherwise. (d) π3L

3 > πS3 if s1 < s2/(s2 − 1), but π3L
3 ¼ πS3 ¼ 0 otherwise.

Next, using Lemma H1, we obtain the following lemma.

Lemma H2 (a) If s1 < s2/(s2 − 1), s1 < 2, and s2 < 2, then πS3 > π12L
3 , π13L

3 > π1L
3 , π23L

3 > π2L
3 , and π3L

3 > πS3 . (b) If s1 < s2/
(s2 − 1), s1 ≥ 2, and s2 < 2, then πS3 > π12L

3 , π13L
3 ¼ π1L

3 ¼ 0, π23L
3 > π2L

3 , and π3L
3 > πS3 . (c) If s1 ≥ s2/(s2 − 1), s1 > 2, and

s2 < 2, then πS3 ¼ π12L
3 ¼ 0, π13L

3 ¼ π1L
3 ¼ 0, π23L

3 > π2L
3 , and π3L

3 ¼ πS3 ¼ 0. (d) If s1 > s2/(s2 − 1), s1 > 2, and s2 ≥ 2, then
πS3 ¼ π12L

3 ¼ 0, π13L
3 ¼ π1L

3 ¼ 0, π23L
3 ¼ π2L

3 ¼ 0, and π3L
3 ¼ πS3 ¼ 0.

Note that the values of s1 and s2 which satisfy each conditional statement in Lemma H2, together with Assumption
1, are located in a different area of Figure 1. For example, the values of s1 and s2 which satisfy the conditional statement
in part (d) are located in the lightly shaded area.

Note also that each conditional statement in Lemma H2 can be simplified. For example, part (a) can be rewritten as:
(a) If s1 < 2, then πS3 > π12L

3 , π13L
3 > π1L

3 , π23L
3 > π2L

3 , and π3L
3 > πS3. However, we choose not to simplify the conditional

statements in Lemma H2 to help readers easily verify the lemma by using Lemma H1.
In part (a), player 3's first‐stage action Period 1 strictly dominates his first‐stage action Period 2 because his action

Period 1 yields a greater expected payoff than his action Period 2 for every list of the other players' first‐stage actions (see
e.g., Osborne, 2004, pp. 45–47).

In parts (b) and (c), player 3's first‐stage action Period 1 weakly dominates his first‐stage action Period 2 because (i)
his action Period 1 yields at least as much an expected payoff as his action Period 2 for every list of the other players'
first‐stage actions and (ii) his action Period 1 yields a greater expected payoff than his action Period 2 for some list of the
other players' first‐stage actions.

In part (d), player 3's first‐stage action Period 1 yields the same expected payoff as his first‐stage action Period 2 for
every list of the other players' first‐stage actions.
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