논문

[70] #Napisa, M., #Lee, M., Incharoensakdi, A., *Woo, H.M. (2020.xx). 

Current understanding of the cyanobacterial CRISPR-Cas systems and development of the synthetic CRISPR-Cas systems for cyanobacteria

Enzyme Microbial. Technol. [Link] (IF=3.553) (JCR Top 27.26% in Biotechnol. Appl. Microbiol.)

 

[69] Choi, S.Y., *Woo, H.M., (2020.09). 

CRISPRi-dCas12a: A dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria

ACS Synth. Biol. (IF=5.571) [Link] (JCR Top 6.96% in Biochemical Res. Methods)

 

[68] Napisa, M., Choi, J.-I., Incharoensakdi, A., *Woo, H.M. (2020.xx).

Recent metabolic engineering and synthetic biology of cyanobacteria for carbon capture and utilization

Biotechnol. Bioproc. Eng. (IF=1.43) [Link] In press. 

 

[67Lee, H.J., Son, J., Sim, S.J., *Woo, H.M. (2020.09).

Metabolic rewiring of synthetic pyruvate dehydrogenase bypasses facilitates high-level photosynthetic acetone biosynthesis from CO2 in cyanobacteria

Plant Biotechnol. J. in press  (IF=6.84) [Link] (JCR Top 3.9% in Plant Science)

[성균관대학교 뉴스] [중앙일보-일간지] [중앙일보] [베리타스] [대학저널] [교수신문] [브릭

 

[66] Lee, S.S., Park, J.H., Heo, Y.B., *Woo, H.M. (2020.01).

Case study of xylose conversion to glycolate in Corynebacterium glutamicum: Current limitation and future perspective of the CRISPR-Cas systems,

Enzyme Microbial. Technol. 132:109395 [Link] [Link2(IF=3.553) (JCR Top 27.26% in Biotechnol. Appl. Microbiol.)

[65] Lee, S.S., Choi. J.-I., *Woo, H.M., (2019.12)

Bioconversion of xylose to ethylene glycol and glycolate in engineered Corynebacterium glutamicum
ACS Omega. 4(25), 21279-21287 [Link(IF=2.58)
 
[64] Napisa, M., Lee, H.J., Incharoensakdi, A., *Woo, H.M., (2019.12)
Evolutionary engineering of Synechococcus elgonatus PCC 7942 for improving production -farnesene from CO2. 
J. Agric. Food Chem. 67(49), 13658-13664 [Link(IF=3.571) 
 
[63] Park, J., Riaz, A., Verma, D., Lee, H.J., Woo, H.M., *Kim, J. (2019.04). 
Fractionation of lignocellulosic biomass over core‐shell Ni‐alumina catalysts with formic acid as a co‐catalyst and hydrogen source,
ChemSusChem. 12:1743-1762 [Link] (IF=7.411)
 
[62] Yook, S.D., Kim, J., Woo, H.M., Um, Y., *Lee, S.M., (2019.03). 
Efficient lipid extraction from the oleaginous yeast Yarrowia lipolytica using switchable solvents, 
Renewable Energy. 132:61-67 [Link] (IF=4.9)
 
[61] Ko, S.C., Lee, H.J., Choi, S.Y., Choi. J.-I., *Woo, H.M. (2019.01). 
Bio-solar cell factories for photosynthetic isoprenoids production 
Planta. 249:181-193  [Link] (IF=3.249)
 
[60] Park, J.H., Yu, B.J., Choi. J.-I., *Woo, H.M.(2019.01)
Heterologous production of squalene from glucose in engineered Corynebacterium glutamicum using multiplex CRISPR interference and high-throughput fermentation
J. Agric. Food Sci. 67(1) 308-319 [Link] (IF=3.412) 
 
[59] Kim, D., *Woo, H.M. (2018.11).
Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories
Appl. Microbiol. Biotechnol. 102(22)9471-9480 [Link] (IF=3.340)
 
[58#Ravikumar, S., #Woo, H.M., *Choi, J.I. (2018.11)
Analysis of novel antioxidant sesquarterpenes (C35 terpenes) produced in recombinant Corynebacterium glutamicum
Appl. Biochem. Biotechnol186(3):525-5834 [Link] (IF=1.751)
 
[57] Yoon, J. and *Woo, H.M. (2018.08) 
CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production 
Biotechnol. Bioeng. 115(8):2067-2074 [Link] (IF=4.48)
 
 
[56] #Lee, S.S., #Shin, H., Jo, S., Lee, S.M., Um, Y. and *Woo, H.M. (2018.07) 
Rapid identification of unknown carboxyl esterase activity in Corynebacterium glutamicum using RNA-guided CRISPR interference 
Enzyme Microb. Technol. 114:63-68 [Link(IF=2.932)
 
[55] Choi, S.Y., Sim, S.J., Choi. J.-I., *Woo, H.M. (2018.06)
Identification of small droplets of squalene in engineered Synechococcus elongatus PCC 7942 using TEM and selective fluorescent Nile red analysis
Lett. Appl. Microbiol. 66:523-529 [Link] (IF=1.575)
 
[54] Kim, E.S., Kim, B.S., Kim, K.Y., Woo, H.M., Lee, S.M., *Um, Y. (2018.02) 
Aerobic and anaerobic cellulose utilization by Paenibacillus sp. CAA11 and enhancement of its cellulolytic ability by expressing a heterologous endoglucanase 
J. Biotechnol. 268:21-27 [Link]
 
[53] Choi, Y.Y., Hong, M.E., Jin E.S., Woo, H.M., *Sim, S.J. (2018.02)
Improvement in modular scalability of polymeric thin-film photobioreactor for autotrophic culturing of Haematococcus pluvialis using industrial flue gas  
Bioresour. Technol. 249:519-526 [Link]
 
[52] *Woo, H.M. (2018.01) 
Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO2
Bioengineered (IF=1.87) 9(1) 2-5 [Link]
 
[51] #Park, J., #Shin, H., Lee, S.M., Um, Y., *Woo, H.M. (2018.01) 
RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain 
Microb. Cell Fact. 17:4 [Link] (IF= 3.831)
 
[50] Yoo, S.K., Joo, Y.C., Kang, D.H., Shin, S.K., Hyeon, J.E., Woo, H.M., Um, Y., Park, C., *Han, S.O. (2017.12)
Enhancing fatty acid production of Saccharomyces cerevisiae as animal feed supplement
J. Agric. Food. Chem. 65 (50), pp 11029–11035 [Link]
 
[49] Lee, H.J., Lee, J., Lee, S.M., Um, Y., Sim, S.J., Choi. J.-I., *Woo, H.M. (2017.12)
Direct conversion of CO2 to a-farnesene by metabolically engineered Synechococcus elongates PCC 7942
J. Agric. Food. Chem. 65(48) 10424-10428 (IF=3.154) [Link(Issue Cover & JCR ranking 3% journal, [Link])
 
[48Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered Escherichia coli
Metab. Eng. 44:325-336 [Link]
 
[47] Min, K., Yum, T., Kim, J., Woo, H.M., Kim, Y., Sang, B.I., Yoo, Y.J., Kim, Y.H, *Um, Y. (2017.09)
Perspective for lignin utilization: cleaving 4-O-5 and Cα-Cβ in dimeric model compounds catalyzed by promiscuous activity of tyrosinase
Biotechnol. Biofuel. 10:212 [Link]
 
[46] Gong, G., Kim, S., Lee, S.M., Woo, H.M., Park, T.H., *Um, Y. (2017.07)
Complete genome sequence of Bacillus sp. 275, producing extracellular cellulolytic, xylanolytic and ligninolytic enzymes
J. Biotechnol. 254, 59-62 [Link]
 
[45] Gong, G., Lee, S.M., Woo, H.M, Park, T.H., *Um, Y. (2017.11)
Influences of media compositions on characteristics of isolated bacteria exhibiting lignocellulolytic activities from various environmental sites
Appl. Biochem. Biotechnol. 183(3) 931-942 [Link]
 
[44] Choi, S.Y., Wang, J.Y., Kwak, H.S., Lee, S.M., Um, Y., Kim, Y., Sim, S.J., Choi. J.-I., *Woo, H.M. (2017.07)
Improvement of squalene production from CO2 in Synechococcus elongatus PCC 7942 by metabolic engineering and scalable production in a photobioreactor 
ACS Synth. Biol. 6(7) p. 1289-1295 (IF=6.076) [Link]
 
[43] *Woo, H.M., Lee, H.J. (2017.05)
Toward direct biodiesel production from CO2 using engineered cyanobacteria 
FEMS Microbiol. Lett. 364(9): fnx066 (IF=2.121) [Link]
 
[42] Jo, S., Yoon, J., Lee, S.M., Um, Y., Han, S.O., *Woo, H.M. (2017.09) 
Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production  
J. Biotechnol. 258:69-78 (IF=2.884) [Link] [Link](Special issues: On the occasion of the 40th anniversary of Biotechnology in Jülich)
 
[41] *Woo, H.M. (2017.06)
Solar-to-chemical and solar-to-fuel production from CO2 by metabolically engineered microorganisms
Curr. Opin. Biotechnol. 45:1–7 (IF=9.294) [Link(JCR ranking 4% journal)
 
[40] Kim, T., Cho, S, Woo, H.M., Lee, S.M., Lee, J., *Um, Y., *Seo, J.H. (2017.04)
High production of 2,3-butanediol from glycerol without 1,3-propanediol formation by Raoultella ornithinolytica B6 
Appl. Microbiol. Biotechnol. 101:2821-2830. (IF=3.337) [Link]
 
[39] Kim, W.J, Lee, S.M., Um, Y., Sim, S.J., *Woo, H.M. (2017.03)
Development of SyneBrick vectors as a synthetic biology platform for gene expression in Synechococcus elongatus PCC 7942
Front. Plant Sci. 8:293 (IF=4.495) [Link(JCR ranking 7% journal)  
 
[38] Lee, H.J., Choi, J., Lee, S.M., Um, Y., Sim, S.J., Kim, Y., *Woo, H.M. (2017.02)
Photosynthetic CO2 conversion to fatty acid ethyl esters (FAEEs) using engineered cyanobacteria
J. Agric. Food. Chem. 65(6) 1087-1092 (IF=3.154) [Link(JCR ranking 3% journal)
[37] Youn, S.H., Kim, K.-Y., Lee, K.M., Lee, S.-M., Woo, H.M., *Um, Y., Effective Isopropanol-Butanol (IB) fermentation by a newly isolated Clostridium sp. A1424 (2016.10). Biotechnol. Biofuels. 9:230 1-15 (IF=6.44) [Link]
 
[36] Kim, T., Cho, S., Lee, S.M., Woo, H.M., Lee, J., *Um, Y., and *Seo, J.H., High Production of 2,3-Butanediol (2,3-BD) by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes. (2016.10) PLOS ONE 11(10): e0165076 (IF=3.057) [Link]
 
[35] Kim, M., Kim, K.Y., Lee, K.M., Youn, S.H., Lee, S.M., Woo, H.M., Oh, M.K., *Um, Y., Butyric acid production from softwood hydrolysate by acetate-consuming Clostridium sp. S1 with high butyric acid yield and selectivity (2016.10) Bioresour. Technol. 218:1208-1214 (IF=4.49) [Link]
 
[34] Kwak, H.S., Kim, J., Woo, H.M., Jin, E.S., Min, B.K., Sim, S.J. Synergistic effect of multiple stress conditions for improving microalgal lipid production, (2016.09). Algal Res. 19: 215-224 (IF=5.014) [Link]
 
[33] #Choi, S.Y., #Lee, H.J., Choi, J., Kim, J., Sim, S.J., Um, Y., Kim, Y., Lee, T.S., Keasling, J., *Woo, H.M., Photosynthetic conversion of CO2 to farnesyl diphosphate-derived phytochemicals (amorpha-4,11-diene and squalene) by engineered cyanobacteria, (2016.09). Biotechnol. Biofuels. 9:202 (IF=6.44) [Link(Collaboration with UC Berekeley)

 

Sungkyunkwan University(SKKU)

top